Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Chọn ngẫu nhiên một nhân viên của doanh nghiệp.
a) Xác suất nhân viên được chọn có mua bảo hiểm nhân thọ là \(0,061\).
b) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nam là \(\frac{{55}}{{118}}\).
c) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Xác suất nhân viên đó là nữ là \(\frac{{63}}{{118}}\)
d) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Khi đó nhân viên đó là nam nhiều hơn là nữ.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Kết nối tri thức Chương 6 có đáp án !!
Quảng cáo
Trả lời:
Gọi A là biến cố “Nhân viên được chọn là nữ” và B là biến cố “Nhân viên được chọn có mua bảo hiểm nhân thọ”.
Theo đề ta có \(P\left( A \right) = 0,45\); \(P\left( {B|A} \right) = 0,07\); \(P\left( {B|\overline A } \right) = 0,05\). Suy ra \(P\left( {\overline A } \right) = 0,55\)
a) Sai. Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,45.0,07 + 0,55.0,05 = 0,059\).
b) Đúng. \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,55.0,05}}{{0,059}} = \frac{{55}}{{118}}\).
c) Đúng. \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,45.0,07}}{{0,059}} = \frac{{63}}{{118}}\).
d) Sai. \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,45.0,07}}{{0,059}} = \frac{{63}}{{118}}\).
Do \(P\left( {A|B} \right) = \frac{{63}}{{118}} > \frac{{55}}{{118}} = P\left( {\overline A |B} \right)\) nên nhân viên được chọn có mua bảo hiểm nhân thọ là nữ sẽ nhiều hơn là nam.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].
Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:
Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).
Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).
Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).
Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).
Theo công thức xác suất toàn phần, ta có
\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).
Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].
Lời giải
Gọi \(A\) là biến cố: “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn”.
\(B\): “Bệnh nhân đội mũ bảo hiểm đúng cách”.
\(AB\): “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn và đội mũ bảo hiểm đúng cách”.
Theo đề ra ta có \(P\left( {AB} \right) = 15\% = 0,15\); \(P\left( B \right) = 90\% = 0,9\); \(P\left( A \right) = 60\% = 0,6\).
Xác suất để HS bị chấn thương vùng đầu khi gặp tai nạn, biết HS đó đã đội mũ bảo hiểm đúng cách là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,15}}{{0,9}} = \frac{1}{6}\).
Vậy việc đội mũ bảo hiểm đúng cách đối với học sinh khi di chuyển bằng xe máy điện sẽ làm giảm khả năng bị chấn thương vùng đầu khi gặp tai nạn số lần là \(\frac{{0,6}}{{\frac{1}{6}}} = 3,6\)lần.
Câu 3
\(\frac{1}{{10}}\)
\(\frac{2}{9}\).
\(\frac{8}{9}\).
\(\frac{2}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.