Câu hỏi:

21/10/2025 150 Lưu

Một đội bắn súng gồm có 8 nam và 2 nữ. Xác suất bắn trúng của các xạ thủ nam là 0,8 còn của các xạ thủ nữ là 0,9. Chọn ngẫu nhiên một xạ thủ bắn một viên đạn và xạ thủ đó đã bắn trúng. Tính xác suất (làm tròn đến hàng phần trăm) để xạ thủ đó là nữ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\] là biến cố “Xạ thủ được chọn là nữ”, suy ra \[\bar A\] là biến cố “xạ thủ được chọn là nam”.

Gọi \[B\] là biến cố “xạ thủ được chọn bắn trúng”.

Theo giả thiết ta có: \[P\left( A \right) = \frac{2}{{2 + 8}} = \frac{1}{5} \Rightarrow P\left( {\bar A} \right) = \frac{4}{5};\,\,P\left( {B|A} \right) = 0,9;\,\,P\left( {B|\bar A} \right) = 0,8\].

Áp dụng công thức xác suất toàn phần ta có:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{1}{5}.0,9 + \frac{4}{5}.0,8 = 0,82\].

Xác suất để xạ thủ được chọn ra bắn trúng đó là nữ là \[P\left( {A|B} \right)\].

Theo công thức Bayes, ta có:\[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{5}.0,9}}{{0,82}} = \frac{9}{{41}} \approx 0,22\].

Vậy xác suất để xạ thủ bắn trúng đó là nữ là \[0,22\].

Đáp án: 0,22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].

Lời giải

Gọi \(A\) là biến cố: “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn”.

\(B\): “Bệnh nhân đội mũ bảo hiểm đúng cách”.

\(AB\): “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn và đội mũ bảo hiểm đúng cách”.

Theo đề ra ta có \(P\left( {AB} \right) = 15\%  = 0,15\); \(P\left( B \right) = 90\%  = 0,9\); \(P\left( A \right) = 60\%  = 0,6\).

Xác suất để HS bị chấn thương vùng đầu khi gặp tai nạn, biết HS đó đã đội mũ bảo hiểm đúng cách là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,15}}{{0,9}} = \frac{1}{6}\).

Vậy việc đội mũ bảo hiểm đúng cách đối với học sinh khi di chuyển bằng xe máy điện sẽ làm giảm khả năng bị chấn thương vùng đầu khi gặp tai nạn số lần là \(\frac{{0,6}}{{\frac{1}{6}}} = 3,6\)lần.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP