Câu hỏi:

22/10/2025 106 Lưu

Với mọi số \(a\), ta luôn có:

A. \(\sqrt {{a^2}} = a.\)                         
B. \(\sqrt {{a^2}} = \left| a \right|.\)       
C. \(\sqrt a = \left| a \right|.\)                
D. \(\sqrt {{a^2}} = - a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Với mọi số \(a\), ta luôn có: \(\sqrt {{a^2}} = \left| a \right|.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho  \(\Delta ABC\) nhọn có ba đỉnh nằm (ảnh 1)

a) Gọi \(I\) là trung điểm của \(AM.\) Khi đó \(AI = MI = \frac{1}{2}AM.\)

Xét \(\Delta AHM\) vuông tại \(H\)\(HI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(HI = \frac{1}{2}AM.\)

Xét \(\Delta AKM\) vuông tại \(K\)\(KI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(KI = \frac{1}{2}AM.\)

Do đó \(AI = HI = MI = KI = \frac{1}{2}AM\) nên bốn điểm \(A,H,M,K\) cùng thuộc đường tròn tâm \(I,\) đường kính \(AM\).

Hay \(AM\) là đường kính của đường tròn \(\left( I \right)\) đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Gọi \(N\) là giao điểm của \(HI\) và đường tròn tâm \(I\) đường kính \(AM.\)

Suy ra \(\widehat {HKN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\Delta HKN\) vuông tại \(K\)

Ta có \(HK = HN.\sin \widehat {HNK}\)

\(HN = AM\) (cùng là đường kính của đường tròn tâm \(I\))

\(\widehat {HNK} = \widehat {HAK}\) (hai góc nội tiếp cùng chắn cung \(HK\) của đường tròn tâm \(I\))

Suy ra \[HK = AM \cdot \sin \widehat {HAK} = AM \cdot \sin \widehat {BAC}.\]

c) Ta có \(\Delta ABC\) cố định nên \(\sin \widehat {BAC}\) không đổi

Do đó từ \(HK = AM.\sin \widehat {BAC}\), để \(HK\) dài nhất thì \(AM\) dài nhất mà \(AM\) là dây của đường tròn \(\left( O \right)\)

Nên \(AM\) dài nhất khi \(AM\) là đường kính của đường tròn \(\left( O \right)\)

Do đó \(M\) đối xứng với \(A\) qua \(\left( O \right)\).

Lời giải

Hướng dẫn giải

a) Với \(a \ge 0,\,\,a \ne 4,\,\,a \ne 9\), ta có:

\(A = \frac{3}{{\sqrt a + 3}}:\left( {\frac{{\sqrt a - 2}}{{\sqrt a + 3}} + \frac{{\sqrt a - 3}}{{2 - \sqrt a }} - \frac{{9 - a}}{{a + \sqrt a - 6}}} \right)\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{\left( {\sqrt a - 3} \right)\left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{a - 9}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4 - a + 9 - 9 + a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)

\( = \frac{3}{{\sqrt a + 3}}:\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\)

\( = \frac{3}{{\sqrt a + 3}} \cdot \frac{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}{{{{\left( {\sqrt a - 2} \right)}^2}}}\)

\( = \frac{3}{{\sqrt a - 2}}\).

Vậy với \(a \ge 0,{\rm{ }}a \ne 4,{\rm{ }}a \ne 9\) ta được \(P = \frac{3}{{\sqrt a - 2}}\).

b) Ta có: \(A + \left| A \right| = 0\) suy ra \(\left| A \right| = - A\).

Do đó, \(A \le 0\) hay \(\frac{3}{{\sqrt a - 2}} \le 0\) suy ra \(\sqrt a - 2 < 0\) do đó \(\sqrt a < 2\).

Suy ra \(0 \le a < 4\).

Vậy \(0 \le a < 4\) là giá trị cần tìm.

Câu 4

A. \(S = \pi \left( {{r^2} - {R^2}} \right).\)                            
B. \(S = \pi \left( {{r^2} + {R^2}} \right).\)                              
C. \(S = \pi \left( {{R^2} - {r^2}} \right).\)                                
D. Kết quả khác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\sin \alpha .\)  
B. \(\tan \alpha .\)  
C. \(\cos \alpha .\)  
D. \(\cot \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP