Câu hỏi:

22/10/2025 10 Lưu

Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Hai người đứng cách nhau \(250{\rm{ m}}\) như hình minh họa dưới đây. (Kết quả làm tròn đến hàng phần trăm)

Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông (ảnh 1)

    a) \(CH = AH \cdot \tan 43^\circ .\)

    b) \(BH = \frac{{CH}}{{\tan 28^\circ }}.\)

    c) \(AB = \left( {\tan 43^\circ + \tan 28^\circ } \right)CH\).

    d) Cồn cách bờ sông hai người đứng một khoảng lớn hơn \(85{\rm{ m}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng. b) Đúng.          c) Sai.            d) Sai.

Khoảng cách của cồn và bờ sông hai người đứng chính là độ dài đoạn thẳng \(CH.\)

• Xét tam giác \(AHC\) vuông tại \(H\), ta có: \(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) nên \(AH = \frac{{CH}}{{\tan \widehat {CAH}}} = \frac{{CH}}{{\tan 43^\circ }}\)

Suy ra \(CH = AH \cdot \tan 43^\circ .\)

Do đó, ý a) là đúng.

• Xét tam giác \(BHC\) vuông tại \(H\), ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) nên \(BH = \frac{{CH}}{{\tan \widehat {CBH}}} = \frac{{CH}}{{\tan 28^\circ }}\) (2)

Do đó, ý b) là đúng.

• Từ (1) và (2) ta có:

\(AB = AH + BH = \frac{{CH}}{{\tan 43^\circ }} + \frac{{CH}}{{\tan 28^\circ }} = CH\left( {\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}} \right)\)

Do đó, ý c) là sai.

• Do đó, \(CH = \frac{{AB}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} = \frac{{250}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} \approx 84,66{\rm{ (m)}}{\rm{.}}\)

Vậy cồn cách bờ sông hai người đứng khoảng \(84,66{\rm{ m}}\).

Vậy ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 0,15

Điều kiện xác định: \(x \ge 0,{\rm{ }}x \ne 1\).

Thay \(x = \frac{1}{{25}}\) (thỏa mãn ĐKXĐ) vào \(A = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{2\left( {1 - \sqrt x } \right)}}\), ta có:

\(A = \frac{{\sqrt {\frac{1}{{25}}} \left( {\sqrt {\frac{1}{{25}}} + 1} \right)}}{{2\left( {1 - \sqrt {\frac{1}{{25}}} } \right)}} = \frac{{\frac{1}{5}\left( {\frac{1}{5} + 1} \right)}}{{2\left( {1 - \frac{1}{5}} \right)}} = \frac{{\frac{1}{5} \cdot \frac{6}{5}}}{{2 \cdot \frac{4}{5}}} = \frac{6}{{25}}:\frac{8}{5} = \frac{3}{{20}} = 0,15\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.              c) Đúng.          d) Đúng.

Gọi \(x\) là số học sinh của lớp 9A, \(y\) là số học sinh của lớp 9B \(\left( {x,{\rm{ }}y \in {\mathbb{N}^ * }} \right)\).

• Theo đề bài, tổng số học sinh hai lớp là học sinh nên ta có phương trình \(x + y = 86{\rm{ }}\left( 1 \right)\)

Do đó, ý a) là đúng.

Lớp 9A góp được số giấy báo cũ là \(3.5 + 2.\left( {x - 3} \right) = 2x + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).

Lớp 9B góp được số giấy báo cũ là \(3.5 + 2.\left( {y - 3} \right) = 2y + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).

Mà lớp 9B góp nhiều hơn lớp 9A \({\rm{8 kg}}\) giấy báo cũ nên ta có phương trình:

\(2y + 9 - 2x - 9 = 8\) suy ra \(2y - 2x = 8\) hay \(y - x = 4{\rm{ }}\left( 2 \right)\)

Do đó, ý b) là sai.

• Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 86\\y - x = 4\end{array} \right.\).

Do đó, ý c) là đúng.

Cộng theo vế hai phương trình ta được \(2y = 90\), suy ra \(y = 45\) (TM).

Thay \(y = 45\) vào phương trình (1), ta được \(x + 45 = 86\), suy ra \(x = 41\) (TM).

Vậy lớp 9A có \(41\) học sinh, lớp 9B có \(45\) học sinh.

Do đó, ý d) là đúng.

Câu 3

A. \(\frac{2}{{x + 1}} = \frac{3}{{x + 3}}.\)                           
B. \(\frac{5}{{x - 1}} = \frac{2}{{x - 3}}.\) 
C. \(\frac{{x + 3}}{{x - 1}} = 2.\)               
D. \(\frac{2}{{x + 1}} = \frac{3}{{x - 3}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt {{a^2}} = a.\)                         
B. \(\sqrt {{a^2}} = \left| a \right|.\)       
C. \(\sqrt a = \left| a \right|.\)                
D. \(\sqrt {{a^2}} = - a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP