Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Hai người đứng cách nhau \(250{\rm{ m}}\) như hình minh họa dưới đây. (Kết quả làm tròn đến hàng phần trăm)

a) \(CH = AH \cdot \tan 43^\circ .\)
b) \(BH = \frac{{CH}}{{\tan 28^\circ }}.\)
c) \(AB = \left( {\tan 43^\circ + \tan 28^\circ } \right)CH\).
d) Cồn cách bờ sông hai người đứng một khoảng lớn hơn \(85{\rm{ m}}{\rm{.}}\)
Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Hai người đứng cách nhau \(250{\rm{ m}}\) như hình minh họa dưới đây. (Kết quả làm tròn đến hàng phần trăm)
a) \(CH = AH \cdot \tan 43^\circ .\)
b) \(BH = \frac{{CH}}{{\tan 28^\circ }}.\)
c) \(AB = \left( {\tan 43^\circ + \tan 28^\circ } \right)CH\).
d) Cồn cách bờ sông hai người đứng một khoảng lớn hơn \(85{\rm{ m}}{\rm{.}}\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
Khoảng cách của cồn và bờ sông hai người đứng chính là độ dài đoạn thẳng \(CH.\)
• Xét tam giác \(AHC\) vuông tại \(H\), ta có: \(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) nên \(AH = \frac{{CH}}{{\tan \widehat {CAH}}} = \frac{{CH}}{{\tan 43^\circ }}\)
Suy ra \(CH = AH \cdot \tan 43^\circ .\)
Do đó, ý a) là đúng.
• Xét tam giác \(BHC\) vuông tại \(H\), ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) nên \(BH = \frac{{CH}}{{\tan \widehat {CBH}}} = \frac{{CH}}{{\tan 28^\circ }}\) (2)
Do đó, ý b) là đúng.
• Từ (1) và (2) ta có:
\(AB = AH + BH = \frac{{CH}}{{\tan 43^\circ }} + \frac{{CH}}{{\tan 28^\circ }} = CH\left( {\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}} \right)\)
Do đó, ý c) là sai.
• Do đó, \(CH = \frac{{AB}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} = \frac{{250}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} \approx 84,66{\rm{ (m)}}{\rm{.}}\)
Vậy cồn cách bờ sông hai người đứng khoảng \(84,66{\rm{ m}}\).
Vậy ý d) là sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 0,15
Điều kiện xác định: \(x \ge 0,{\rm{ }}x \ne 1\).
Thay \(x = \frac{1}{{25}}\) (thỏa mãn ĐKXĐ) vào \(A = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{2\left( {1 - \sqrt x } \right)}}\), ta có:
\(A = \frac{{\sqrt {\frac{1}{{25}}} \left( {\sqrt {\frac{1}{{25}}} + 1} \right)}}{{2\left( {1 - \sqrt {\frac{1}{{25}}} } \right)}} = \frac{{\frac{1}{5}\left( {\frac{1}{5} + 1} \right)}}{{2\left( {1 - \frac{1}{5}} \right)}} = \frac{{\frac{1}{5} \cdot \frac{6}{5}}}{{2 \cdot \frac{4}{5}}} = \frac{6}{{25}}:\frac{8}{5} = \frac{3}{{20}} = 0,15\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
Gọi \(x\) là số học sinh của lớp 9A, \(y\) là số học sinh của lớp 9B \(\left( {x,{\rm{ }}y \in {\mathbb{N}^ * }} \right)\).
• Theo đề bài, tổng số học sinh hai lớp là học sinh nên ta có phương trình \(x + y = 86{\rm{ }}\left( 1 \right)\)
Do đó, ý a) là đúng.
• Lớp 9A góp được số giấy báo cũ là \(3.5 + 2.\left( {x - 3} \right) = 2x + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).
Lớp 9B góp được số giấy báo cũ là \(3.5 + 2.\left( {y - 3} \right) = 2y + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).
Mà lớp 9B góp nhiều hơn lớp 9A \({\rm{8 kg}}\) giấy báo cũ nên ta có phương trình:
\(2y + 9 - 2x - 9 = 8\) suy ra \(2y - 2x = 8\) hay \(y - x = 4{\rm{ }}\left( 2 \right)\)
Do đó, ý b) là sai.
• Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 86\\y - x = 4\end{array} \right.\).
Do đó, ý c) là đúng.
• Cộng theo vế hai phương trình ta được \(2y = 90\), suy ra \(y = 45\) (TM).
Thay \(y = 45\) vào phương trình (1), ta được \(x + 45 = 86\), suy ra \(x = 41\) (TM).
Vậy lớp 9A có \(41\) học sinh, lớp 9B có \(45\) học sinh.
Do đó, ý d) là đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.