Câu hỏi:

22/10/2025 10 Lưu

Một chiếc đèn thả hình vành khuyên, rỗng ở giữa. Biết đường kính của đường tròn lớn là \(90\,{\rm{cm}}\), đường kính của đường tròn nhỏ là \(60\,{\rm{cm}}\). Hỏi diện tích của chiếc đèn bằng bao nhiêu mét vuông? (Kết quả làm tròn đến hàng phần trăm)
Một chiếc đèn thả hình vành khuyên, rỗng ở giữa. Biết đường (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 0,35

Bán kính của đường tròn lớn là: \(90:2 = 45{\rm{\;(cm)}}{\rm{.}}\)

Bán kính của đường tròn nhỏ là: \(60:2 = 30{\rm{\;(cm)}}{\rm{.}}\)

Diện tích bề mặt trên chiếc đèn chính là diện tích hình vành khuyên được giới hạn bởi hai đường tròn có bán kính lần lượt là \(45{\rm{\;cm}},\,\,30{\rm{\;cm}}\) và bằng:

\(S = \pi \left( {{{45}^2} - {{30}^2}} \right) = 3\,\,534,29{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right) \approx 0,35{\rm{ }}{{\rm{m}}^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 0,15

Điều kiện xác định: \(x \ge 0,{\rm{ }}x \ne 1\).

Thay \(x = \frac{1}{{25}}\) (thỏa mãn ĐKXĐ) vào \(A = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{2\left( {1 - \sqrt x } \right)}}\), ta có:

\(A = \frac{{\sqrt {\frac{1}{{25}}} \left( {\sqrt {\frac{1}{{25}}} + 1} \right)}}{{2\left( {1 - \sqrt {\frac{1}{{25}}} } \right)}} = \frac{{\frac{1}{5}\left( {\frac{1}{5} + 1} \right)}}{{2\left( {1 - \frac{1}{5}} \right)}} = \frac{{\frac{1}{5} \cdot \frac{6}{5}}}{{2 \cdot \frac{4}{5}}} = \frac{6}{{25}}:\frac{8}{5} = \frac{3}{{20}} = 0,15\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.              c) Đúng.          d) Đúng.

Gọi \(x\) là số học sinh của lớp 9A, \(y\) là số học sinh của lớp 9B \(\left( {x,{\rm{ }}y \in {\mathbb{N}^ * }} \right)\).

• Theo đề bài, tổng số học sinh hai lớp là học sinh nên ta có phương trình \(x + y = 86{\rm{ }}\left( 1 \right)\)

Do đó, ý a) là đúng.

Lớp 9A góp được số giấy báo cũ là \(3.5 + 2.\left( {x - 3} \right) = 2x + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).

Lớp 9B góp được số giấy báo cũ là \(3.5 + 2.\left( {y - 3} \right) = 2y + 9{\rm{ }}\left( {{\rm{kg}}} \right)\).

Mà lớp 9B góp nhiều hơn lớp 9A \({\rm{8 kg}}\) giấy báo cũ nên ta có phương trình:

\(2y + 9 - 2x - 9 = 8\) suy ra \(2y - 2x = 8\) hay \(y - x = 4{\rm{ }}\left( 2 \right)\)

Do đó, ý b) là sai.

• Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 86\\y - x = 4\end{array} \right.\).

Do đó, ý c) là đúng.

Cộng theo vế hai phương trình ta được \(2y = 90\), suy ra \(y = 45\) (TM).

Thay \(y = 45\) vào phương trình (1), ta được \(x + 45 = 86\), suy ra \(x = 41\) (TM).

Vậy lớp 9A có \(41\) học sinh, lớp 9B có \(45\) học sinh.

Do đó, ý d) là đúng.

Câu 3

A. \(\frac{2}{{x + 1}} = \frac{3}{{x + 3}}.\)                           
B. \(\frac{5}{{x - 1}} = \frac{2}{{x - 3}}.\) 
C. \(\frac{{x + 3}}{{x - 1}} = 2.\)               
D. \(\frac{2}{{x + 1}} = \frac{3}{{x - 3}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\sqrt {{a^2}} = a.\)                         
B. \(\sqrt {{a^2}} = \left| a \right|.\)       
C. \(\sqrt a = \left| a \right|.\)                
D. \(\sqrt {{a^2}} = - a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP