Câu hỏi:

22/10/2025 24 Lưu

B. TỰ LUẬN (3,0 điểm)

(1,0 điểm) Cho biểu thức \[T = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 1}}{{a - 1}}\] với \[a > 0,{\rm{ }}a \ne 1\].

    a) Chứng minh rằng \[T = \frac{{2\left( {a - 1} \right)}}{{a + 1}}\].

    b) Tìm các giá trị nguyên của \[a\] để \[T\] nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Với \[a > 0,{\rm{ }}a \ne 1\], ta có:

\[T = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 1}}{{a - 1}}\]

 \[ = \left[ {\frac{{a\sqrt a - 1}}{{\left( {\sqrt a - 1} \right)\sqrt a }} - \frac{{a\sqrt a + 1}}{{\left( {\sqrt a + 1} \right)\sqrt a }}} \right] \cdot \frac{{a - 1}}{{a + 1}}\]

 \[ = \left[ {\frac{{\left( {a\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)\sqrt a }} - \frac{{\left( {a\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)\sqrt a }}} \right] \cdot \frac{{a - 1}}{{a + 1}}\]

\[ = \frac{{\left( {a\sqrt a - 1} \right)\left( {\sqrt a + 1} \right) - \left( {a\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)\sqrt a }} \cdot \frac{{a - 1}}{{a + 1}}\]

\[ = \frac{{{a^2} + a\sqrt a - \sqrt a - 1 - {a^2} + a\sqrt a - \sqrt a + 1}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)\sqrt a }} \cdot \frac{{a - 1}}{{a + 1}}\]

\[ = \frac{{2a\sqrt a - 2\sqrt a }}{{\left( {a + 1} \right)\sqrt a }}\]

\[ = \frac{{2\left( {a - 1} \right)}}{{a + 1}}\].

Vậy với \[a > 0,{\rm{ }}a \ne 1\] ta được \[T = \frac{{2\left( {a - 1} \right)}}{{a + 1}}\].

b) Ta có: \[T = \frac{{2\left( {a - 1} \right)}}{{a + 1}} = \frac{{2a - 2}}{{a + 1}} = \frac{{2a + 2 - 4}}{{a + 1}} = 1 - \frac{4}{{a + 1}}\].

Do đó, để \[T \in \mathbb{Z}\] thì \[\frac{4}{{a + 1}}\] là số nguyên.

Suy ra \[a + 1\] là Ư(4).

Vì điều kiện \[a > 0,{\rm{ }}a \ne 1\] nên ta có \[a + 1 = 4\] suy ra \[a = 3.\]

Vậy \[a = 3\] là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.              c) Sai.                  d) Đúng.

Xét \[\Delta AKD\] vuông tại \[D\], ta có: \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}}\]O10-2024-GV154......... hay \[AK = AD \cdot \tan 36^\circ \].

Do đó, ý a) là đúng.

Ta có: \[FK = EH = CH - CE = 25 - 5 = 20{\rm{\;(m)}}{\rm{.}}\]O10-2024-GV154.........

Do đó, ý b) là đúng.

Từ \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}},\] ta có \[AK = KD \cdot \tan 36^\circ = 25 \cdot \tan 36^\circ \approx 18,164{\rm{\;(m)}}{\rm{.}}\]

Ta có \[AH = AK + KH \approx 18,164 + 1,6 = 19,764 \approx 20{\rm{\;(m)}}{\rm{.}}\]

Vậy độ dài tòa nhà chính là độ dài đoạn \[AH\] và khoảng 20 m.

Do đó, ý c) là sai.

Xét \[\Delta AFK\] vuông tại \[K\], ta có: \[\tan F = \frac{{AK}}{{KF}} \approx \frac{{18,164}}{{20}}\]O10-2024-GV154........., do đó \[\widehat {KFA} \approx 42^\circ .\]

Vậy góc nâng từ \[F\] đến nóc tòa nhà khoảng \[42^\circ \].

Vậy ý d) là đúng.

Câu 2

A. \(x \ne 0;\,\,x \ne 1.\)                          
B. \(x \ne 0;\,\,x \ne - 1.\)                           
C. \(x \ne 3;\,\,x \ne 2.\)                          
D. \(x \ne 0.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện xác định của phương trình \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 2}}{x} = 2\)\(x + 1 \ne 0\)\(x \ne 0\) hay \(x \ne - 1;\,\,x \ne 0.\)

Câu 4

A. \(\sin \left( {90^\circ - \alpha } \right) = \cos \alpha .\)  
B. \(\tan \left( {90^\circ - \alpha } \right) = \cos \alpha .\)      
C. \(\cot \left( {90^\circ - \alpha } \right) = 1 - \tan \alpha .\)                                
D. \(\cot \left( {90^\circ - \alpha } \right) = \sin \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m - 3 > n - 3.\) 
B. \(m + 3 < n + 3.\)                                
C. \(m - 2 < n - 2.\)      
D. \(n + 2 > m + 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(NP = MN \cdot \tan P.\)                 
B. \(NP = MN \cdot \cos P.\)                   
C. \(NP = MP \cdot \cos P.\)                  
D. \(NP = MP \cdot \cot P.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP