(0,5 điểm) Một tấm bìa cứng hình chữ nhật có chiều dài là \({\rm{50 cm}}\)và chiều rộng là \({\rm{30 cm}}\). Bạn Linh cắt ở mỗi góc một tấm bìa hình vuông cạnh \(x{\rm{ }}\left( {{\rm{cm}}} \right)\) và xếp phần còn lại thành một hình hộp không nắp. Tìm \(x\) để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất.
(0,5 điểm) Một tấm bìa cứng hình chữ nhật có chiều dài là \({\rm{50 cm}}\)và chiều rộng là \({\rm{30 cm}}\). Bạn Linh cắt ở mỗi góc một tấm bìa hình vuông cạnh \(x{\rm{ }}\left( {{\rm{cm}}} \right)\) và xếp phần còn lại thành một hình hộp không nắp. Tìm \(x\) để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất.
Quảng cáo
Trả lời:
Hướng dẫn giải
Diện tích tấm bìa hình chữ nhật này là: \(50.30 = 1500{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)
Chiều dài sau khi cắt tấm bìa là: \(50 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).
Chiều rộng sau khi cắt tấm bìa là: \(30 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).
Diện tích xung quanh của hộp là: \(2x\left( {50 - 2x + 30 - 2x} \right) = 2x\left( {80 - 4x} \right) = - 8{x^2} + 160x{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất thì \( - 8{x^2} + 160x\) đạt giá trị lớn nhất.
Ta có: \( - 8{x^2} + 160x = - 8\left( {{x^2} - 20x + 100} \right) + 800 = - 8{\left( {x - 10} \right)^2} + 800\)
Với mọi \(x > 0,\) ta có: \( - 8{\left( {x - 10} \right)^2} \le 0\) nên \( - 8{\left( {x - 10} \right)^2} + 800 \le 800\).
Dấu “=” xảy ra khi \(x - 10 = 0\) hay \(x = 10\).
Vậy diện tích xung quanh hình hộp chữ nhật là \(800{\rm{ c}}{{\rm{m}}^2}\) khi \(x = 10{\rm{ cm}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
• Xét \[\Delta AKD\] vuông tại \[D\], ta có: \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}}\] hay \[AK = AD \cdot \tan 36^\circ \].
Do đó, ý a) là đúng.
• Ta có: \[FK = EH = CH - CE = 25 - 5 = 20{\rm{\;(m)}}{\rm{.}}\]
Do đó, ý b) là đúng.
• Từ \[\tan 36^\circ = \tan D = \frac{{AK}}{{KD}},\] ta có \[AK = KD \cdot \tan 36^\circ = 25 \cdot \tan 36^\circ \approx 18,164{\rm{\;(m)}}{\rm{.}}\]
Ta có \[AH = AK + KH \approx 18,164 + 1,6 = 19,764 \approx 20{\rm{\;(m)}}{\rm{.}}\]
Vậy độ dài tòa nhà chính là độ dài đoạn \[AH\] và khoảng 20 m.
Do đó, ý c) là sai.
• Xét \[\Delta AFK\] vuông tại \[K\], ta có: \[\tan F = \frac{{AK}}{{KF}} \approx \frac{{18,164}}{{20}}\], do đó \[\widehat {KFA} \approx 42^\circ .\]
Vậy góc nâng từ \[F\] đến nóc tòa nhà khoảng \[42^\circ \].
Vậy ý d) là đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Điều kiện xác định của phương trình \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 2}}{x} = 2\) là \(x + 1 \ne 0\) và \(x \ne 0\) hay \(x \ne - 1;\,\,x \ne 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
