Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Hai người đứng cách nhau \(250{\rm{ m}}\) như hình minh họa dưới đây. (Kết quả làm tròn đến hàng phần trăm)

a) \(CH = AH \cdot \tan 43^\circ .\)
b) \(BH = \frac{{CH}}{{\tan 28^\circ }}.\)
c) \(AB = \left( {\tan 43^\circ + \tan 28^\circ } \right)CH\).
d) Cồn cách bờ sông hai người đứng một khoảng lớn hơn \(85{\rm{ m}}{\rm{.}}\)
Hai người A và B đứng cùng bờ sông nhìn ra một cồn C nổi giữa sông. Người A nhìn ra cồn với một góc \(43^\circ \) so với bờ sông, người B nhìn ra cồn với một góc \(28^\circ \) so với bờ sông. Hai người đứng cách nhau \(250{\rm{ m}}\) như hình minh họa dưới đây. (Kết quả làm tròn đến hàng phần trăm)

a) \(CH = AH \cdot \tan 43^\circ .\)
b) \(BH = \frac{{CH}}{{\tan 28^\circ }}.\)
c) \(AB = \left( {\tan 43^\circ + \tan 28^\circ } \right)CH\).
d) Cồn cách bờ sông hai người đứng một khoảng lớn hơn \(85{\rm{ m}}{\rm{.}}\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
Khoảng cách của cồn và bờ sông hai người đứng chính là độ dài đoạn thẳng \(CH.\)
• Xét tam giác \(AHC\) vuông tại \(H\), ta có: \(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) nên \(AH = \frac{{CH}}{{\tan \widehat {CAH}}} = \frac{{CH}}{{\tan 43^\circ }}\)
Suy ra \(CH = AH \cdot \tan 43^\circ .\)
Do đó, ý a) là đúng.
• Xét tam giác \(BHC\) vuông tại \(H\), ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) nên \(BH = \frac{{CH}}{{\tan \widehat {CBH}}} = \frac{{CH}}{{\tan 28^\circ }}\) (2)
Do đó, ý b) là đúng.
• Từ (1) và (2) ta có:
\(AB = AH + BH = \frac{{CH}}{{\tan 43^\circ }} + \frac{{CH}}{{\tan 28^\circ }} = CH\left( {\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}} \right)\)
Do đó, ý c) là sai.
• Do đó, \(CH = \frac{{AB}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} = \frac{{250}}{{\frac{1}{{\tan 43^\circ }} + \frac{1}{{\tan 28^\circ }}}} \approx 84,66{\rm{ (m)}}{\rm{.}}\)
Vậy cồn cách bờ sông hai người đứng khoảng \(84,66{\rm{ m}}\).
Vậy ý d) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Với \(a \ge 0,\,\,a \ne 4,\,\,a \ne 9\), ta có:
\(A = \frac{3}{{\sqrt a + 3}}:\left( {\frac{{\sqrt a - 2}}{{\sqrt a + 3}} + \frac{{\sqrt a - 3}}{{2 - \sqrt a }} - \frac{{9 - a}}{{a + \sqrt a - 6}}} \right)\)
\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{\left( {\sqrt a - 3} \right)\left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)
\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{a - 9}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \frac{{9 - a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)
\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4 - a + 9 - 9 + a}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)
\( = \frac{3}{{\sqrt a + 3}}:\left[ {\frac{{a - 4\sqrt a + 4}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}} \right]\)
\( = \frac{3}{{\sqrt a + 3}}:\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\)
\( = \frac{3}{{\sqrt a + 3}} \cdot \frac{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}{{{{\left( {\sqrt a - 2} \right)}^2}}}\)
\( = \frac{3}{{\sqrt a - 2}}\).
Vậy với \(a \ge 0,{\rm{ }}a \ne 4,{\rm{ }}a \ne 9\) ta được \(P = \frac{3}{{\sqrt a - 2}}\).
b) Ta có: \(A + \left| A \right| = 0\) suy ra \(\left| A \right| = - A\).
Do đó, \(A \le 0\) hay \(\frac{3}{{\sqrt a - 2}} \le 0\) suy ra \(\sqrt a - 2 < 0\) do đó \(\sqrt a < 2\).
Suy ra \(0 \le a < 4\).
Vậy \(0 \le a < 4\) là giá trị cần tìm.
Lời giải
Hướng dẫn giải
Gọi số máy móc công ty nên sử dụng là \(x\) máy \(\left( {x > 0,\,x \in \mathbb{N}} \right)\).
Trong một giờ số quả bóng tennis sản xuất được là \(30x\) (quả bóng).
Như vậy, số giờ để sản xuất \(8\,000\) quả bóng tennis là \(\frac{{8\,000}}{{30x}}\) giờ.
Mỗi giờ phải trả \(192\,000\)đồng cho người giám sát và chi phí thiết lập cho mỗi máy là 200 nghìn đồng nên chi phí sản xuất là
\(B = 200\,000x + \frac{{8\,000}}{{30x}} \cdot 192\,000 = 200\,000x + \frac{{51\,200\,000}}{x}\) (đồng)
Với hai số không âm \(a\) và \(b\) ta có \({\left( {\sqrt a - \sqrt b } \right)^2} \ge 0\) suy ra \(a + b \ge 2\sqrt {ab} \).
Áp dụng bất đẳng thức trên với hai số dương \(200\,000x\) và \(\frac{{51\,200\,000}}{x}\), ta được:
\(200\,000x + \,\frac{{51\,200\,000}}{x} \ge 2\sqrt {200\,000x \cdot \frac{{51\,200\,000}}{x}} = 6\,400\,000\)
Dấu “=” xảy ra khi \(200\,000x = \frac{{51\,200\,000}}{x}\) hay \({x^2} = 256\) suy ra \(x = 16\) (do \(x > 0,\,x \in \mathbb{N}\))
Vậy số máy móc công ty nên sử dụng là 16 máy để chi phí sản xuất là thấp nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
