Câu hỏi:

22/10/2025 10 Lưu

Trong các hệ phương trình dưới đây, đâu là phương trình bậc nhất hai ẩn?

A. \(\left\{ \begin{array}{l}x - y = 3\\{x^2} + y = 4\end{array} \right..\)                  
B. \(\left\{ \begin{array}{l}3x - y = 5\\0x + 0y = 3\end{array} \right..\)                
C. \(\left\{ \begin{array}{l}2x + y = 4\\x + {y^2} = 3\end{array} \right..\)                                
D. \(\left\{ \begin{array}{l}4x + y = 5\\x - 3y = 2\end{array} \right..\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Hệ phương trình bậc nhất hai ẩn gồm một cặp phương trình bậc nhất hai ẩn có dạng \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right..\)

Do đó, \(\left\{ \begin{array}{l}4x + y = 5\\x - 3y = 2\end{array} \right.\) là một hệ phương trình bậc nhất hai ẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 35

Gọi vận tốc của hai xe đi từ \(A\)\(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Điều kiện \(y > 5,\,x > 0.\)

Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)

Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\)\(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).

Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).

Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).

Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).

Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.

Lời giải

Hướng dẫn giải

Đáp án: −4

Ta có: \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\]

   \[\frac{{4\left( {4x + 9} \right)}}{{12}} + \frac{6}{{12}} \ge \frac{{3\left( {2x - 1} \right)}}{{12}}\]

   \[4\left( {4x + 9} \right) + 6 \ge 3\left( {2x - 1} \right)\]

   \[16x + 36 + 6 \ge 6x - 3\]

   \[16x + 42 \ge 6x - 3\]

   \[16x - 6x \ge - 3 - 42\]

   \[10x \ge - 45\]

    \[x \ge - \frac{9}{2}.\]

Vậy bất phương trình có nghiệm là \[x \ge - \frac{9}{2}.\]

Do đó, giá trị nguyên nhỏ nhất thỏa mãn bất phương trình trên là \[ - 4\].

Câu 6

A. 1.                         
B. 2.                         
C. 3.                        
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP