Cho tam giác \(ABC\) vuông tại \(A\). Khẳng định nào dưới đây là sai?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Vì tam giác \(ABC\) vuông tại \(A\) nên \(\widehat B + \widehat C = 90^\circ \) hay \(\widehat B,\,\widehat C\) là hai góc phụ nhau.
Do đó, \(\tan B = \cot C.\)
Vậy khẳng định D là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 35
Gọi vận tốc của hai xe đi từ \(A\) và \(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Điều kiện \(y > 5,\,x > 0.\)
Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)
Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\) là \(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).
Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).
Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).
Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).
Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.
Câu 2
A. \(\frac{3}{4}.\)
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
