Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị trí quan sát \(A\) cao \(7{\rm{ m}}\) so với mặt đất, có thể nhìn thấy đỉnh \(B\) và đỉnh \(C\) của một cột ăng – ten dưới góc \(50^\circ \) và \(40^\circ \) so với phương nằm ngang.

a) \(CE = AE.\tan 40^\circ .\)
b) \(BE = AE.\tan 50^\circ .\)
c) \(AE = \frac{{BC}}{{\tan 40^\circ + \tan 50^\circ }}\).
d) Chiều cao của tòa nhà lớn hơn 24 m.
Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị trí quan sát \(A\) cao \(7{\rm{ m}}\) so với mặt đất, có thể nhìn thấy đỉnh \(B\) và đỉnh \(C\) của một cột ăng – ten dưới góc \(50^\circ \) và \(40^\circ \) so với phương nằm ngang.

a) \(CE = AE.\tan 40^\circ .\)
b) \(BE = AE.\tan 50^\circ .\)
c) \(AE = \frac{{BC}}{{\tan 40^\circ + \tan 50^\circ }}\).
d) Chiều cao của tòa nhà lớn hơn 24 m.Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
• Chiều cao của tòa nhà chính là độ dài đoạn thẳng \(BH\).
Xét tam giác \(CAE\) vuông tại \(E\), ta có:
\(CE = AE.\tan \widehat {CAE} = AE.\tan 40^\circ {\rm{ }}\left( {\rm{m}} \right)\) (1).
Do đó, ý a) là đúng.
• Xét tam giác \(BAE\) vuông ở \(E\), ta có:
\(BE = AE.\tan \widehat {BAE} = AE.\tan 50^\circ {\rm{ }}\left( {\rm{m}} \right)\) (2).
Do đó, ý b) là đúng.
• Từ (1) và (2) suy ra \(BC = BE - CE = AE\tan 50^\circ - AE\tan 40^\circ \)
\(BC = AE\left( {\tan 50^\circ - \tan 40^\circ } \right)\)
\(5 = AE\left( {\tan 50^\circ - \tan 40^\circ } \right)\)
\(AE = \frac{5}{{\tan 50^\circ - \tan 40^\circ }}{\rm{ }}\left( {\rm{m}} \right)\).
Do đó, ý c) là sai.
• Với \(AE = \frac{5}{{\tan 50^\circ - \tan 40^\circ }}\) suy ra \(CE = AE \cdot \tan \widehat {CAE} = \frac{5}{{\tan 50^\circ - \tan 40^\circ }} \cdot \tan 40^\circ \approx 11,9{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)
Chiều cao của tòa nhà là: \(5 + 11,9 + 7 \approx 23,9{\rm{ }}\left( {\rm{m}} \right)\).
Vậy tòa nhà cao \(23,9{\rm{ }}\left( {\rm{m}} \right)\).
Do đó, ý d) là sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 35
Gọi vận tốc của hai xe đi từ \(A\) và \(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Điều kiện \(y > 5,\,x > 0.\)
Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)
Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\) là \(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).
Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).
Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).
Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).
Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
• Chi phí ăn uống của mỗi người trong một ngày là \(60\,000 + 60\,000 + 30\,000 = 150\,000\) (đồng).
Do đó, ý a) là đúng.
• Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).
Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) (đồng).
Do đó, ý b) là đúng.
• Vì số tiền nhà tài trợ dự kiến là \(30\) triệu đồng nên ta có bất phương trình:
\(150\,000x + 17\,000\,000 \le 30\,000\,000\).
Do đó, ý c) là sai.
• Giải bất phương trình:
\(150\,000x + 17\,000\,000 \le 30\,000\,000\)
\(x \le \frac{{260}}{3} \approx 86,7\)
Vậy có thể tổ chức cho nhiều nhất cho \(86\) bạn tham gia.
Do đó, ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
