Câu hỏi:

22/10/2025 25 Lưu

Mặt đĩa CD có dạng vành khuyên giới hạn bởi hai đường tròn có bán kính lần lượt là \[4{\rm{ cm}}\]\[6{\rm{ cm}}\]. Hình vành khuyên đó có diện tích bằng bao nhiêu centimet vuông? (Kết quả làm tròn đến hàng phần mười)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 62,8

Diện tích hình vành khuyên đó là: \(S = \pi \left( {{6^2} - {4^2}} \right) = 20\pi \approx 62,8{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 35

Gọi vận tốc của hai xe đi từ \(A\)\(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Điều kiện \(y > 5,\,x > 0.\)

Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)

Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\)\(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).

Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).

Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).

Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).

Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.

Câu 2

A. \(\frac{3}{4}.\)         

B. \(\frac{3}{5}.\)         
C. \(\frac{4}{3}.\)         
D. \(\frac{4}{5}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3;\,\,AB = 4;\,\,BC = 5.\) Khi đó \(\tan C\) bằng A. \(\frac{3}{4}.\)	B. \(\frac{3}{5}.\)	C. \(\frac{4}{3}.\)	D. \(\frac{4}{5}.\) (ảnh 1)

Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP