(0,5 điểm) Một người đào ao cá trên thửa ruộng dạng hình tam giác vuông \[ABC\] tại \[A\] có độ dài các cạnh góc vuông \[AB = 6{\rm{ m,}}\] \[AC = 8{\rm{ m}}{\rm{.}}\] Một chiếc máy xúc ở vị trí điểm \[M\] di chuyển trên bờ \[BC.\] Gọi \[MD\] và \[ME\] là khoảng cách từ \[M\] đến bờ \[AB,AC.\] Người đó đào được ao là tứ giác \[ADME\]. Tính diện tích lớn nhất của ao cá mà người đó có thể đào.

Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[AD = x\,\,\left( {x > 0} \right)\].
Ta có tứ giác \[ADME\] có \[\widehat {ADE} = \widehat {DAE} = \widehat {AEM} = 90^\circ \] nên \[ADME\] là hình chữ nhật.
Do đó, \[EM = AD = x{\rm{\;(m)}}{\rm{.}}\]
Ta có \(EM\,{\rm{//}}\,AB\) (cùng vuông góc với \(AC)\) nên theo hệ quả định lí Thalès, ta có:
\[\frac{{EM}}{{AB}} = \frac{{CE}}{{CA}}\] hay \[\frac{x}{6} = \frac{{CE}}{8}\] suy ra \[CE = \frac{4}{3}x\].
Ta có \[AE = AC - EC = 8 - \frac{4}{3}x\].
Diện tích hình chữ nhật \[ADME\] là:
\[{S_{ADME}} = AD.AE = x\left( {8 - \frac{4}{3}x} \right)\]\[ = - \frac{4}{3}{x^2} + 8x = - \frac{4}{3}\left( {{x^2} - 6x} \right)\]
\[ = - \frac{4}{3}\left( {{x^2} - 6x + 9} \right) + 12\]\[ = - \frac{4}{3}{\left( {x - 3} \right)^2} + 12\].
Vì \[{\left( {x - 3} \right)^2} \ge 0\] với mọi \(x \in \mathbb{R}\) nên \[ - \frac{4}{3}{\left( {x - 3} \right)^2} \le 0\] với mọi \(x \in \mathbb{R}\).
Do đó \[ - \frac{4}{3}{\left( {x - 3} \right)^2} + 12 \le 12\] với mọi \(x \in \mathbb{R}\).
Dấu “=” xảy ra khi \[x - 3 = 0\] hay \[x = 3.\]
Khi đó \[D\] là trung điểm của \[AB\].
Lúc này, xét \(\Delta ABC\) có \(D\) là trung điểm của \(AB\) và \(DM\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(DM\) là đường trung bình của tam giác \(ABC,\) suy ra \[M\] là trung điểm của \[BC\].
Như vậy, diện tích lớn nhất của hình chữ nhật \[ADME\] bằng \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\] khi \[M\] là trung điểm của \[BC\].
Vậy diện tích ao cá lớn nhất mà người đó có thể đào là \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].
Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\) có \[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]
Vậy \[\Delta ABC\] vuông tại \[C\].
b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)
Xét \[\Delta CDO\] và \[\Delta BDO\] có:
\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]
Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).
Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).
Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].
|
c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\] Ta có: \[IC \bot AB\] và \[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\]. Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1) Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2) Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\] Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].
Xét \(\Delta ACF\) vuông tại \(C,\) có \(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\] Xét \[\Delta CEO\] và \[\Delta AEO\], có: \[CE = AE\], \[OC = OA\] và \[OE\] là cạnh chung Do đó \[\Delta CEO = \Delta AEO\] (c.c.c) Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng). Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \]. Vậy ba điểm \[E,C,D\] thẳng hàng. |
|
Lời giải
Hướng dẫn giải
a) Với \(x > 0,{\rm{ }}x \ne 1\) ta có:
\(P = \left( {\frac{{x - 2}}{{x + 2\sqrt x }} + \frac{1}{{\sqrt x + 2}}} \right) \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\)
\[ = \frac{{x - 2 + \sqrt x }}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]
\[ = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\sqrt x }} \cdot \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\]
\[ = \frac{{\sqrt x + 1}}{{\sqrt x }}\].
Vậy với \(x > 0,{\rm{ }}x \ne 1\) ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}.\)
b) Ta có \(P = \frac{{\sqrt x + 1}}{{\sqrt x }}\).\(BC\)
Theo đề, để \(2P = 2\sqrt x + 5\) thì \(\frac{{2\left( {\sqrt x + 1} \right)}}{{\sqrt x }} = 2\sqrt x + 5\)
Suy ra \(2\sqrt x + 2 = 2x + 5\sqrt x \) hay \(2x + 3\sqrt x - 2 = 0\) do đó \(\left( {\sqrt x + 2} \right)\left( {\sqrt x - \frac{1}{2}} \right) = 0\)
Suy ra \(\sqrt x + 2 = 0\) hoặc \(\sqrt x - \frac{1}{2} = 0\).
Do đó, \(\sqrt x = - 2\) (vô lí) hoặc \(\sqrt x = \frac{1}{2}\).
Suy ra \(x = \frac{1}{4}\) (thỏa mãn).
Vậy \(x = \frac{1}{4}\) thì \(2P = 2\sqrt x + 5\).
Câu 3
A. \(\left\{ \begin{array}{l}x - 3y = 5\\2y - x = 3\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

