(0,5 điểm) Một người đào ao cá trên thửa ruộng dạng hình tam giác vuông \[ABC\] tại \[A\] có độ dài các cạnh góc vuông \[AB = 6{\rm{ m,}}\] \[AC = 8{\rm{ m}}{\rm{.}}\] Một chiếc máy xúc ở vị trí điểm \[M\] di chuyển trên bờ \[BC.\] Gọi \[MD\] và \[ME\] là khoảng cách từ \[M\] đến bờ \[AB,AC.\] Người đó đào được ao là tứ giác \[ADME\]. Tính diện tích lớn nhất của ao cá mà người đó có thể đào.

Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[AD = x\,\,\left( {x > 0} \right)\].
Ta có tứ giác \[ADME\] có \[\widehat {ADE} = \widehat {DAE} = \widehat {AEM} = 90^\circ \] nên \[ADME\] là hình chữ nhật.
Do đó, \[EM = AD = x{\rm{\;(m)}}{\rm{.}}\]
Ta có \(EM\,{\rm{//}}\,AB\) (cùng vuông góc với \(AC)\) nên theo hệ quả định lí Thalès, ta có:
\[\frac{{EM}}{{AB}} = \frac{{CE}}{{CA}}\] hay \[\frac{x}{6} = \frac{{CE}}{8}\] suy ra \[CE = \frac{4}{3}x\].
Ta có \[AE = AC - EC = 8 - \frac{4}{3}x\].
Diện tích hình chữ nhật \[ADME\] là:
\[{S_{ADME}} = AD.AE = x\left( {8 - \frac{4}{3}x} \right)\]\[ = - \frac{4}{3}{x^2} + 8x = - \frac{4}{3}\left( {{x^2} - 6x} \right)\]
\[ = - \frac{4}{3}\left( {{x^2} - 6x + 9} \right) + 12\]\[ = - \frac{4}{3}{\left( {x - 3} \right)^2} + 12\].
Vì \[{\left( {x - 3} \right)^2} \ge 0\] với mọi \(x \in \mathbb{R}\) nên \[ - \frac{4}{3}{\left( {x - 3} \right)^2} \le 0\] với mọi \(x \in \mathbb{R}\).
Do đó \[ - \frac{4}{3}{\left( {x - 3} \right)^2} + 12 \le 12\] với mọi \(x \in \mathbb{R}\).
Dấu “=” xảy ra khi \[x - 3 = 0\] hay \[x = 3.\]
Khi đó \[D\] là trung điểm của \[AB\].
Lúc này, xét \(\Delta ABC\) có \(D\) là trung điểm của \(AB\) và \(DM\,{\rm{//}}\,AC\) (cùng vuông góc với \(AB)\) nên \(DM\) là đường trung bình của tam giác \(ABC,\) suy ra \[M\] là trung điểm của \[BC\].
Như vậy, diện tích lớn nhất của hình chữ nhật \[ADME\] bằng \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\] khi \[M\] là trung điểm của \[BC\].
Vậy diện tích ao cá lớn nhất mà người đó có thể đào là \[{\rm{12 }}{{\rm{m}}^{\rm{2}}}\].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].
Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\) có \[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]
Vậy \[\Delta ABC\] vuông tại \[C\].
b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)
Xét \[\Delta CDO\] và \[\Delta BDO\] có:
\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]
Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).
Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).
Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].
|
c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\] Ta có: \[IC \bot AB\] và \[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\]. Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1) Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2) Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\] Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].
Xét \(\Delta ACF\) vuông tại \(C,\) có \(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\] Xét \[\Delta CEO\] và \[\Delta AEO\], có: \[CE = AE\], \[OC = OA\] và \[OE\] là cạnh chung Do đó \[\Delta CEO = \Delta AEO\] (c.c.c) Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng). Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \]. Vậy ba điểm \[E,C,D\] thẳng hàng. |
|
Lời giải
Hướng dẫn giải
Đáp án: −16
Ta có: \[\frac{{x + 1}}{3} - \frac{{x - 2}}{2} \ge 4\]
\[\frac{{2\left( {x + 1} \right)}}{6} - \frac{{3\left( {x - 2} \right)}}{6} \ge 4\]
\[\frac{{2\left( {x + 1} \right) - 3\left( {x - 2} \right)}}{6} - 4 \ge 0\]
\[\frac{{8 - x - 24}}{6} \ge 0\]
\[\frac{{ - x - 16}}{6} \ge 0\]
\[ - x - 16 \ge 0\]
\[x \le - 16\].
Do đó, giá trị nguyên lớn nhất thỏa mãn bất phương trình trên là \(x = - 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

