Câu hỏi:

22/10/2025 24 Lưu

(1,5 điểm) Cho nửa đường tròn \[\left( O \right)\] đường kính \[AB\]. Lấy \[C\] nằm trên đường tròn \[\left( O \right)\]. Gọi \[K\] là trung điểm của dây cung \[BC\]. Qua \[B\] dựng tiếp tuyến với \[\left( O \right)\], cắt \[OK\] tại \[D\].

a) Chứng minh rằng \[OD \bot BC\] và \[\Delta ABC\] vuông.

b) Chứng minh \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Vẽ \[CH \bot AB\] tại \[H\]. Gọi \[I\] là trung điểm của \[CH\]. Tiếp tuyến tại \[A\] của đường tròn \[\left( O \right)\] cắt \[BI\] tại \[E\]. Chứng minh \[E,C,D\] thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Chứng minh rằng \[OD \bo (ảnh 1)

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].

Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\)\[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]

Vậy \[\Delta ABC\] vuông tại \[C\].

b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)

Xét \[\Delta CDO\]\[\Delta BDO\] có:

\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]

Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).

Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).

Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\]

Ta có: \[IC \bot AB\]\[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\].

Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1)

Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2)

Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\]

Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].

 

Xét \(\Delta ACF\) vuông tại \(C,\)\(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\]

Xét \[\Delta CEO\]\[\Delta AEO\], có:

\[CE = AE\], \[OC = OA\]\[OE\] là cạnh chung

Do đó \[\Delta CEO = \Delta AEO\] (c.c.c)

Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng).

Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \].

Vậy ba điểm \[E,C,D\] thẳng hàng.

a) Chứng minh rằng \[OD \bo (ảnh 2)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Sai.         b) Sai.              c) Đúng.        d) Đúng.

Từ hình vẽ, ta xét tam giác vuông \(ABC\), có:

\(AC = AB.\tan \widehat {CBA} = 48.\tan 80^\circ \approx 272,22{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

Do đó, ý a) là sai.

• Do người đó có tầm mắt \[1,65{\rm{ m}}\] nên chiều cao của tòa nhà là:

\[272,22 - 1,65 = 270,57{\rm{ }}\left( {\rm{m}} \right)\].

Vậy tòa nhà cao \[270,57{\rm{ m}}\].

Do đó, ý b) là sai.

Khoảng cách từ xe thu gom phế thải ở \[E\] đến chân tòa nhà là độ dài đoạn \[EA\].

Xét tam giác vuông \[EAD\], ta có:

\[EA = \frac{{AD}}{{\tan \widehat {DEA}}} = \frac{{200}}{{\tan 65^\circ }} \approx 93,26{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]

Do đó, ý c) là đúng.

Khoảng cách của hai xe thu gom phế thải là \[93,26 - 48 = 45,26{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]

Vậy hai xe thu gom phế thải cách nhau \[45,26{\rm{ m}}\].

Vậy ý d) là đúng.

Lời giải

Hướng dẫn giải

Đáp án: −16

Ta có: \[\frac{{x + 1}}{3} - \frac{{x - 2}}{2} \ge 4\]

\[\frac{{2\left( {x + 1} \right)}}{6} - \frac{{3\left( {x - 2} \right)}}{6} \ge 4\]

\[\frac{{2\left( {x + 1} \right) - 3\left( {x - 2} \right)}}{6} - 4 \ge 0\]

\[\frac{{8 - x - 24}}{6} \ge 0\]

\[\frac{{ - x - 16}}{6} \ge 0\]

\[ - x - 16 \ge 0\]

\[x \le - 16\].

Do đó, giá trị nguyên lớn nhất thỏa mãn bất phương trình trên là \(x = - 16\).

Câu 3

A. \(2\left( {\sqrt 3 + 1} \right).\)                  
B. \(2\left( {\sqrt 3 - 1} \right).\)                    
C. \(\sqrt 3 + 1.\)       
D. \(\sqrt 3 - 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{x}{2} + \frac{y}{3} = 4.\)         
B. \(3x - 0y - 2 = 0.\)                                
C. \(3y - 2z = \frac{1}{2}.\)                      
D. \(\frac{2}{x} + \frac{y}{3} - 2 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x \ne - 3;{\rm{ }}x \ne 4.\)                                                     
B. \(x \ne 3;{\rm{ }}x \ne - 4.\)                          
C. \(x \ne - 3;{\rm{ }}x \ne 4;{\rm{ }}x \ne - 2.\)                             
D. \(x \ne - 3;{\rm{ }}x \ne - 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP