Câu hỏi:

23/10/2025 59 Lưu

Ném còn là một trò chơi dân gian Việt Nam phổ biến trong các dịp lễ hội đầu năm của các dân tộc Tày, Thái, Mường, chủ yếu ở vùng Tây Bắc. Ý nghĩa của trò chơi là cầu mong mùa màng tươi tốt, vạn vật sinh sôi nảy nở và cầu mong giao hoà âm dương, đất trời.

Trò chơi gồm một cây cọc thẳng lớn, thường làm bằng thân tre khá cao và có gắn một vòng tròn lớn trên ngọn. Cọc được đặt ở một sân bãi rộng rãi. Quả còn (trái còn) làm bằng vải nhiều màu chứa hạt bông, thóc hoặc cát, dây lược gắn với quả còn dài \(50 - 60\;{\rm{cm}}\). Người chơi đứng cách cây cọc một khoảng cách tương đối, sau đó cầm dây lược ném quả còn làm sao cho quả bay qua vòng tròn trên cây cọc là chiến thắng.

Ném còn là một trò chơi dân gian Việt Nam phổ biến trong các dịp lễ hội đầu năm của các dân tộc Tày, Thái, Mường, chủ yếu ở vùng Tây Bắc. (ảnh 1)

Tại lễ hội năm nay, một người chơi ném còn đứng cách chân cọc một khoảng \[4{\rm{ m}}\] và góc nâng từ tầm mắt đến đỉnh ngọn cọc là \(70^\circ .\) Biết rằng chiều cao từ mặt đất đến mắt người này là \[1,68{\rm{ m}}.\] Tính chiều cao của cọc (kết quả làm tròn đến hàng phần mười) (đơn vị: mét).

                                     Ném còn là một trò chơi dân gian Việt Nam phổ biến trong các dịp lễ hội đầu năm của các dân tộc Tày, Thái, Mường, chủ yếu ở vùng Tây Bắc. (ảnh 2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tứ giác \[ABED\] là hình chữ nhật nên \(AB = ED = 4\;\,{\rm{m}}\,;\,\,BE = AD = 1,68\;\,{\rm{m}}{\rm{.}}\)

Xét \(\Delta ABC\) vuông tại \(B\), ta có:

\(\tan \widehat {BAC} = \frac{{BC}}{{AB}}\) hay \(\tan 70^\circ  = \frac{{BC}}{4}\).

Suy ra \(BC = 4 \cdot \tan 70^\circ  \approx 11\;\,({\rm{m)}}\).

Do đó \(CE = CB + BE = 11 + 1,68 = 12,7\,\;({\rm{m)}}{\rm{.}}\)

Vậy chiều cao của cọc là \(12,7\,\;{\rm{m}}\).

Đáp án: 12,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[23,38\,\,{\rm{m}}\].                           
B. \[21,84\,\,{\rm{m}}\].                                
C. \[23,39\,\,{\rm{m}}\].                                
D. \[21,85\,\,{\rm{m}}\].

Lời giải

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

Lời giải

Chọn C

Gọi \(A,\,\,D\) là vị trí của người đứng;

\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;

\[H\] là hình chiếu của \[A\] lên \[BC.\]

Vậy chiều cao của bức tư (ảnh 2)

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);

\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]

Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:

\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).

Suy ra \(AB = \sqrt {3,69}  = 1,92\;\,({\rm{m}}).\)

Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:

\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).

Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]

Câu 3

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)                               
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)         
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)         
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP