Câu hỏi:

23/10/2025 50 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho góc nhọn \[\alpha .\] Khẳng định nào sau đây đúng?

A. \[0 < \sin \alpha < 1\,;\,\,0 < \cos \alpha < 1.\]                             
B. \[ - 1 < \sin \alpha < 1\,;\,\, - 1 < \cos \alpha < 1.\]                                
C. \[ - 1 < \sin \alpha < 0\,;\,\, - 1 < \cos \alpha < 0.\]                                  
D. \[ - 1 \le \sin \alpha < 0\,;\,\, - 1 \le \cos \alpha < 0.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Theo định nghĩa tỉ số lượng giác trong tam giác vuông, ta có các tỉ số lượng giác của góc nhọn \[\alpha \] luôn dương và \[\sin \alpha  < 1\,;\,\,\cos \alpha  < 1.\]

Do đó \[0 < \sin \alpha  < 1\,;\,\,0 < \cos \alpha  < 1.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]  Đáp án: 1906. (ảnh 2)

Gọi \[D\] và \[E\] lần lượt là điểm đặt mắt khi người quan sát đỉnh núi đứng ở vị trí \[B\] và \[C.\]

Gọi \[I\] là hình chiếu của điểm \[D\] trên \[AH\].

So với mặt đất thì \[BD\] và \[CE\] là phương thẳng đứng; \[HC\] và \[IE\] là phương ngang nên các tứ giác \[IHBD,\,\,IHCE,\,\,DBCE\] là hình chữ nhật.

Do đó \[DE = BC = \,475\,\,{\rm{m}}\]; \[IH = DB = EC = 1,6\,\,{\rm{m}}\].

• Xét \[\Delta AID\] vuông tại \[I\] nên:

\[ID = AI \cdot \,\cot \widehat {ADI} = AI \cdot \,\cot 34^\circ  = AI \cdot \tan 56^\circ \] (do \[\cot 34^\circ  = \tan 56^\circ \]).   \[\left( 1 \right)\]

• Xét \[\Delta AIE\] vuông tại \[I\] nên:

\[IE = AI \cdot \,\cot \widehat {AEI} = AI \cdot \,\cot 30^\circ  = AI \cdot \tan 60^\circ \] (do \[\cot 30^\circ  = \tan 60^\circ \]).   \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[IE - ID = AI\left( {\tan 60^\circ  - \tan 56^\circ } \right)\]

\[AI\left( {\tan 60^\circ  - \tan 56^\circ } \right) = 475\]

 \[AI = \frac{{475}}{{\tan 60^\circ  - \tan 56^\circ }} \approx 1\,\,903,9\,\,({\rm{m}}).\]

Chiều cao \[AH\] của ngọn núi là:

\[AH = AI + IH \approx 1903,9\, + 1,6\, \approx 1906\,\,({\rm{m)}}{\rm{.}}\]

Vậy chiều cao \[AH\] của ngọn núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]

Đáp án: 1906.

Lời giải

Chọn C

Ta có: \(HB = \frac{{BC}}{2} = \frac{{25}}{2} = 12,5\;\,({\rm{cm)}}{\rm{.}}\)

Xét  vuông tại \(H\), ta có:

\(\sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{{12,5}}{{40}}\) hay \(\widehat {BAH} = 18^\circ 12'\) nên \(\widehat {BAC} = 2 \cdot 18^\circ 12' = 36^\circ 24'\).

Vậy góc tạo bởi hai thanh compa là \(36^\circ 24'.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP