Trong không gian Oxyz, một ngôi nhà như hình vẽ dưới đây có sàn nhà nằm trên mặt phẳng (Oxy). Hai mái nhà lần lượt nằm trên các mặt phẳng (P): \(x - 2y + 5 = 0\) và \(\left( Q \right):x - 2y - 3z + 20 = 0\). Hỏi là chiều cao của ngôi nhà tính từ sàn nhà lên nóc nhà là bao nhiêu? (làm tròn đến hàng đơn vị).

Quảng cáo
Trả lời:
Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ \(\left\{ \begin{array}{l}x - 2y + 5 = 0\\x - 2y - 3z + 20 = 0\end{array} \right.\).
Từ phương trình thứ nhất chọn \(x = - 5 \Rightarrow y = 0\)thay vào phương trình còn lại ta được \(z = 5\).
Vậy điểm A(−5; 0; 5) là một điểm thuộc đường nóc nhà.
Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm A đến mặt phẳng (Oxy) và bằng 5.
Trả lời: 5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt phẳng (ABC) là \(\frac{x}{2} + \frac{y}{4} + \frac{z}{{ - 2}} = 1\)\( \Leftrightarrow 2x + y - 2z - 4 = 0\).
Độ dài đường cao của tứ diện ABCD vẽ từ đỉnh D là \(d\left( {D,\left( {ABC} \right)} \right) = \frac{{\left| {2.2 + 1 - 2.3 - 4} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{5}{3}\).
Suy ra a = 5; b = 3. Do đó T = 5 – 2.3 = −1.
Trả lời: −1.
Lời giải
Ta có \(C\left( {2;4;0} \right)\); \(M\left( {0;2;2} \right)\); \(G\left( {\frac{4}{3};\frac{4}{3};\frac{4}{3}} \right)\).
Ta có \(\overrightarrow {AM} = \left( {0;2;2} \right),\overrightarrow {AG} = \left( {\frac{4}{3};\frac{4}{3};\frac{4}{3}} \right),\left[ {\overrightarrow {AM} ,\overrightarrow {AG} } \right] = \left( {0;\frac{8}{3}; - \frac{8}{3}} \right) = \frac{8}{3}\left( {0;1; - 1} \right) = \frac{8}{3}\overrightarrow n \).
Mặt phẳng (AMG) đi qua A nhận \(\overrightarrow n = \left( {0;1; - 1} \right)\) làm vectơ pháp tuyến có phương trình là \(y - z = 0\).
Khi đó \(d\left( {B,\left( {AMG} \right)} \right) = \frac{{\left| 4 \right|}}{{\sqrt 2 }} \approx 2,83\).
Trả lời: 2,83.
Câu 3
\(3\).
\(\frac{2}{3}\).
\(\frac{4}{3}\).
\(\frac{{11}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(Q\left( {3;3;0} \right)\).
\(N\left( {2;2;2} \right)\).
\(P\left( {1;2;3} \right)\).
\(M\left( {1; - 1;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
