Câu hỏi:

25/10/2025 8 Lưu

Trong không gian Oxyz, phương trình mặt cầu có tâm I(1; 3; 5) và tiếp xúc với mặt phẳng (Oxz) là

A.

\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 5} \right)^2} = 9\).

B.

\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 5} \right)^2} = 26\).

C.

\({\left( {x + 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 5} \right)^2} = 26\).

D.

\({\left( {x + 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 5} \right)^2} = 9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

\(R = d\left( {I,\left( {Oxz} \right)} \right) = 3\).

Phương trình mặt cầu cần tìm là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 5} \right)^2} = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: C

Ta có \(AP = \sqrt {{{\left( { - 1 - 3} \right)}^2} + {3^2} + {1^2}} = \sqrt {26} > 5\).

Suy ra P không thuộc vùng phủ sóng của thiết bị nói trên.

Câu 4

A.

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 13\).

B.

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = \sqrt {13} \).

C.

\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 27\).

D.

\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = \sqrt {27} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

\({\left( {{x^2} - 8} \right)^2} + {\left( {y - 12} \right)^2} + {\left( {z - 24} \right)^2} = {9^2}\).

B.

\({\left( {x - 9} \right)^2} + {\left( {{y^2} - 10} \right)^2} + {\left( {z - 11} \right)^2} = {12^2}\).

C.

\({\left( {x - 13} \right)^2} + {\left( {y - 24} \right)^2} - {\left( {z - 36} \right)^2} = {7^2}\).

D.

\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {5^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP