Trong không gian Oxyz, cho các điểm A(−3; 0; 1), B(0; −2; −3), C(0; 0; 3), D(−3; 1; 1). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD.
( a) Hình chiếu vuông góc của tâm mặt cầu (S) lên trục Oy là điểm \(H\left( {0;\frac{1}{2};0} \right)\).
( b) Khoảng cách từ gốc tọa độ đến tâm của mặt cầu (S) bằng \(\frac{1}{2}\).
( c) Mặt cầu (S) có bán kính bằng \(\frac{{\sqrt {451} }}{6}\).
( d) Đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 2}}{3}\) đi qua tâm của mặt cầu (S).
Quảng cáo
Trả lời:
Gọi (S): \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Vì (S) đi qua A(−3; 0; 1), B(0; −2; −3), C(0; 0; 3), D(−3; 1; 1) nên ta có hệ phương trình
\( \Leftrightarrow \left\{ \begin{array}{l}6a - 2c + d = - 10\\4b + 6c + d = - 13\\ - 6c + d = - 9\\6a - 2b - 2c + d = - 11\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{6}\\b = \frac{1}{2}\\c = - \frac{1}{2}\\d = - 12\end{array} \right.\).
Suy ra tâm mặt cầu (S) là \(I\left( {\frac{1}{6};\frac{1}{2}; - \frac{1}{2}} \right)\).
a) Hình chiếu vuông góc của I lên trục Oy là điểm \(H\left( {0;\frac{1}{2};0} \right)\).
b) Ta có \(OI = \sqrt {{{\left( {\frac{1}{6}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( { - \frac{1}{2}} \right)}^2}} = \frac{{\sqrt {19} }}{6}\).
c) Bán kính \(R = OI = \sqrt {{{\left( {\frac{1}{6}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( { - \frac{1}{2}} \right)}^2} - \left( { - 12} \right)} = \frac{{\sqrt {451} }}{6}\).
d) Thay tọa độ điểm I vào đường thẳng d ta được \(\frac{{\frac{1}{6} - 1}}{2} = \frac{{\frac{1}{2}}}{1} = \frac{{ - \frac{1}{2} - 2}}{3}\) (vô lí) nên d không đi qua I.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(M\left( {5;0;0} \right)\).
\(N\left( {3;2; - 1} \right)\).
\(P\left( { - 1;3;1} \right)\).
\(Q\left( {0; - 2;0} \right)\).
Lời giải
Đáp án đúng: C
Ta có \(AP = \sqrt {{{\left( { - 1 - 3} \right)}^2} + {3^2} + {1^2}} = \sqrt {26} > 5\).
Suy ra P không thuộc vùng phủ sóng của thiết bị nói trên.
Lời giải
Mặt cầu có tâm I(1; 3; −2) và R = 7.
Giả sử A(4; 7; −2).
Khoảng cách từ bóng đèn nhỏ đến tâm quả cầu đèn LED là \(IA = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {7 - 3} \right)}^2} + {{\left( { - 2 + 2} \right)}^2}} = 5\).
Trả lời: 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 13\).
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = \sqrt {13} \).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 27\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = \sqrt {27} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\({\left( {{x^2} - 8} \right)^2} + {\left( {y - 12} \right)^2} + {\left( {z - 24} \right)^2} = {9^2}\).
\({\left( {x - 9} \right)^2} + {\left( {{y^2} - 10} \right)^2} + {\left( {z - 11} \right)^2} = {12^2}\).
\({\left( {x - 13} \right)^2} + {\left( {y - 24} \right)^2} - {\left( {z - 36} \right)^2} = {7^2}\).
\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {5^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.