Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong như hình vẽ sau

a) Hàm số \(y = f(x)\)đồng biến trên khoảng \(( - \infty ;3).\)
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số\(y = f\left( x \right)\) là 2.
c) Hàm số \(y = f(x)\)có hai cực trị trái dấu.
d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số \(y = f(x)\) là \[d:y = - 3x\].
Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong như hình vẽ sau

a) Hàm số \(y = f(x)\)đồng biến trên khoảng \(( - \infty ;3).\)
b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số\(y = f\left( x \right)\) là 2.
c) Hàm số \(y = f(x)\)có hai cực trị trái dấu.
d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số \(y = f(x)\) là \[d:y = - 3x\].
Quảng cáo
Trả lời:
a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)
b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.
Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.
c) Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)
d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]
\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(h'\left( t \right) = - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right)\);
\(h'\left( t \right) = 0 \Leftrightarrow - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right) = 0\)\( \Leftrightarrow \frac{\pi }{6} - \frac{\pi }{{12}}t = \frac{\pi }{2} + k\pi \)\( \Leftrightarrow t = - 4 - 12k\).
Vì \(0 \le t \le 24\) nên \( \Leftrightarrow 0 \le - 4 - 12k \le 24\)\( \Leftrightarrow - \frac{7}{3} \le k \le - \frac{1}{3}\) mà\(k \in \mathbb{Z}\) nên \(k = - 2;k = - 1\).
Suy ra \(t = 20;t = 8\).
Bảng biến thiên

Dựa vào bảng biến thiến ta thấy \(\left( {8;20} \right)\) là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần. Suy ra \(a = 8;b = 20.\) Do đó \(T = 2a + b = 36\).
Trả lời: 36.
Lời giải
Hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] xác định và liên tục trên \[\mathbb{R}\].
Ta có: \(f'\left( x \right) = {x^4} - 4{x^3} + 3{x^2} = {x^2}\left( {{x^2} - 4x + 3} \right)\).
\(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {{x^2} - 4x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\{x^2} - 4x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\).
Bảng xét dấu của hàm số \[f'\left( x \right)\] như sau:
![Phần III. Trắc nghiệm trả lời ngắn Câu 1. Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/7-1761387941.png)
Suy ra hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( {1;3} \right)\] có độ dài bằng \(2,\) nên ta có \[a = 1;b = 3 \Rightarrow P = 1.3 = 3.\]
Trả lời: 3.
Câu 3
B. \[\left( {0; + \infty } \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như hình vẽ. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị? A. \[1\]. B. \[2\]. C. \[3\]. D. \[4\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/2-1761387632.png)