Câu hỏi:

26/10/2025 22 Lưu

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\) (m) của mực nước trong kênh tại thời điểm \(t\) (h), với \(0 \le t \le 24\) trong ngày được xác định bởi công thức \(h\left( t \right) = 2\sin \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right) + 5\). Gọi \(\left( {a;b} \right)\) là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần. Tính giá trị của \(T = 2a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(h'\left( t \right) = - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right)\);

\(h'\left( t \right) = 0 \Leftrightarrow - \frac{\pi }{6}\cos \left( {\frac{\pi }{6} - \frac{\pi }{{12}}t} \right) = 0\)\( \Leftrightarrow \frac{\pi }{6} - \frac{\pi }{{12}}t = \frac{\pi }{2} + k\pi \)\( \Leftrightarrow t = - 4 - 12k\).

\(0 \le t \le 24\) nên \( \Leftrightarrow 0 \le - 4 - 12k \le 24\)\( \Leftrightarrow - \frac{7}{3} \le k \le - \frac{1}{3}\)\(k \in \mathbb{Z}\) nên \(k = - 2;k = - 1\).

Suy ra \(t = 20;t = 8\).

Bảng biến thiên

Hằng ngày mực nước của một con kênh lên xuống t (ảnh 1)

Dựa vào bảng biến thiến ta thấy \(\left( {8;20} \right)\) là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần. Suy ra \(a = 8;b = 20.\) Do đó \(T = 2a + b = 36\).

Trả lời: 36.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số ta có

a)  Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\)\((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.

Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.

c)  Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].

Đáp án: a) Sai;   b) Đúng; c) Đúng; d) Sai.

Lời giải

Hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] xác định và liên tục trên \[\mathbb{R}\].

Ta có: \(f'\left( x \right) = {x^4} - 4{x^3} + 3{x^2} = {x^2}\left( {{x^2} - 4x + 3} \right)\).

\(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {{x^2} - 4x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\{x^2} - 4x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\).

Bảng xét dấu của hàm số \[f'\left( x \right)\] như sau:

Phần III. Trắc nghiệm trả lời ngắn Câu 1. Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\). (ảnh 1)

Suy ra hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( {1;3} \right)\] có độ dài bằng \(2,\) nên ta có \[a = 1;b = 3 \Rightarrow P = 1.3 = 3.\]

Trả lời: 3.

Câu 3

A. \[\left( {0;2} \right).\] 

B. \[\left( {0; + \infty } \right).\]                          

C. \[\left( { - 2;0} \right).\]                           
D. \[\left( {2; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[1\].                            
B. \[2\].                             
C. \[3\].                                 
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - \infty ;0} \right)\).                             
B. \[\left( { - \infty ; + \infty } \right)\].    
C. \(\left( {0;2} \right)\).                           
D. \(\left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP