Phần III. Trắc nghiệm trả lời ngắn
Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\).
Phần III. Trắc nghiệm trả lời ngắn
Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\).
Quảng cáo
Trả lời:
Hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] xác định và liên tục trên \[\mathbb{R}\].
Ta có: \(f'\left( x \right) = {x^4} - 4{x^3} + 3{x^2} = {x^2}\left( {{x^2} - 4x + 3} \right)\).
\(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {{x^2} - 4x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\{x^2} - 4x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\).
Bảng xét dấu của hàm số \[f'\left( x \right)\] như sau:
![Phần III. Trắc nghiệm trả lời ngắn Câu 1. Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/7-1761387941.png)
Suy ra hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( {1;3} \right)\] có độ dài bằng \(2,\) nên ta có \[a = 1;b = 3 \Rightarrow P = 1.3 = 3.\]
Trả lời: 3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) suy ra \(y' = \frac{{\left( {2x + 3} \right)\left( {x + 2} \right) - \left( {{x^2} + 3x + 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).
b) \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\end{array} \right.\)\( \Rightarrow y\left( { - 3} \right) = - 3\); \(y\left( { - 1} \right) = 1\).
Suy ra \(A\left( { - 3\,;\, - 3} \right)\) và \(B\left( { - 1\,;\,1} \right)\)
Do \({x_A}.{x_B} = 3 > 0\) nên \(A\) và \(B\) nằm ở cùng một phía của trục tung.
c) Ta có \(\overrightarrow {AB} = \left( {2\,;\,4} \right)\).
Suy ra đường thẳng \(AB\) có phương trình là \( - 2\left( {x + 1} \right) + \left( {y - 1} \right) = 0\)\( \Leftrightarrow y = 2x + 3\).
d) Đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\) nên \(\Delta \) có vectơ pháp tuyến \(\overrightarrow {{n_\Delta }} = \left( {1\,;\,2} \right)\).
\(\overrightarrow {AB} = \left( {2\,;\,4} \right)\)
Suy ra \(\overrightarrow {{n_\Delta }} \) và \(\overrightarrow {AB} \) cùng phương với nhau. Do đó \(AB \bot \Delta \).
Ta có \(I\left( { - 2\,;\, - 1} \right)\) là trung điểm của đoạn thẳng \(AB\) và \(I \in \Delta \).
Vậy \(A\) và \(B\) đối xứng nhau qua đường thẳng \(\Delta \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Lời giải
a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)
b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.
Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.
c) Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)
d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]
\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 3
B. \[\left( {0; + \infty } \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như hình vẽ. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị? A. \[1\]. B. \[2\]. C. \[3\]. D. \[4\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/2-1761387632.png)