Cho hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\) \(\left( {a,b,c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:

Trong các số \(a,b\) và \(c\) có bao nhiêu số dương?
Cho hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\) \(\left( {a,b,c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:

Trong các số \(a,b\) và \(c\) có bao nhiêu số dương?
Quảng cáo
Trả lời:
Đồ thị hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\) có đường tiệm cận đứng là đường thẳng \(x = - \frac{c}{b}\) và đường tiệm cận ngang là đường thẳng \(y = \frac{a}{b}\).
Từ bảng biến thiên ta có: \(\left\{ \begin{array}{l} - \frac{c}{b} = 2\\\frac{a}{b} = 1\end{array} \right. \Leftrightarrow a = b = - \frac{c}{2}\) \(\left( 1 \right)\)
Mặt khác: \(f'\left( x \right) = \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}}\).
Vì hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\) nên
\(f'\left( x \right) = \frac{{ac - b}}{{{{\left( {bx + c} \right)}^2}}} > 0 \Leftrightarrow ac - b > 0\) \(\left( 2 \right)\)
Thay \(\left( 1 \right)\) vào \(\left( 2 \right)\), ta được: \( - \frac{{{c^2}}}{2} + \frac{c}{2} > 0 \Leftrightarrow - {c^2} + c > 0 \Leftrightarrow 0 < c < 1\).
Suy ra c là số dương và a, b là số âm.
Trả lời: 1.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\].
Lời giải
Dựa vào đồ thị hàm số ta có tiệm cận đứng của đồ thị hàm số là \(x = 2\) và tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
+) Xét hàm số \[y = \frac{{{x^2} - x - 1}}{{x - 2}} = x + 1 + \frac{1}{{x - 2}}\] nhận \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Hàm số đó là \[y = \frac{{{x^2} - x - 1}}{{x - 2}}\]. Chọn A.
Lời giải
a) Chi phí để \(A\) sản xuất \(10\) tấn sản phẩm trong một tháng là \(C\left( {10} \right) = 100 + 30.10 = 400\)triệu đồng.
b) Số tiền \(A\) thu được khi bán \(10\) tấn sản phẩm cho \(B\) là
\(R\left( {10} \right) = 10.P\left( {10} \right) = 10.\left( {45 - 0,{{001.10}^2}} \right) = 449\) triệu đồng.
c) Lợi nhuận mà \(A\) thu được là: \(H\left( x \right) = R\left( x \right) - C\left( x \right) = xP\left( x \right) - C\left( x \right)\)
\(P\left( x \right) = 45x - 0,001{x^3} - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).
d) Xét hàm số \(H\left( x \right) = - 0,001{x^3} + 15x - 100\), \(\left( {0 \le x \le 100} \right)\)
Ta có: \(H'\left( x \right) = - 0,003{x^2} + 15 = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow x = 50\sqrt 2 \) (chọn).
Khi đó: \(H\left( 0 \right) = - 100\); \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\]; \(H\left( {100} \right) = 400\).
Vậy \(A\) bán cho \(B\) khoảng \(50\sqrt 2 \approx 70,7\) tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng \[H\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\].
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = - {x^3} + 3{x^2} - 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \[y = \frac{{ax + b}}{{cx - 1}}\] có đồ thị như hình vẽ bên dưới. Giá trị của tổng \[S = a + b + c\] bằng: A. \[S = 0.\] B. \[S = - 2.\] C. \[S = 2.\] D. \[S = 4.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/5-1761390678.png)


![Đường cong hình bên là đồ thị hàm số \(y = {\rm{a}}{x^3} + b{x^2} + cx + d\). Xét các phát biểu sau: 1. \(a = - 1\) 2. \(ad < 0\) 3. \(ad > 0\) 4. \(d = - 1\) 5.\(a + c = b + 1\) Số phát biểu sai là: A. \[2\]. B. \[3\]. C. \[1\]. D. \[4\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/7-1761390753.png)