Một tiệm photocopy có hai máy I và II. Máy I photo 40% số lượng sản phẩm và máy II photo 60% số lượng sản phẩm. Có 4% sản phẩm do máy I photo bị lỗi và 5% sản phẩm do máy II photo bị lỗi. Một sản phẩm được lấy ra ngẫu nhiên để kiểm tra.
a) Nếu sản phẩm được photo bởi máy I thì xác suất sản phẩm đó bị lỗi là 0,04.
b) Xác suất để sản phẩm lấy ra được photo bởi máy II và không bị lỗi là 0,384.
c) Xác suất để sản phẩm lấy ra không bị lỗi là 0,046.
d) Nếu sản phẩm lấy ra bị lỗi, xác suất để nó được photo bởi máy II bằng \(\frac{{15}}{{23}}\).
Một tiệm photocopy có hai máy I và II. Máy I photo 40% số lượng sản phẩm và máy II photo 60% số lượng sản phẩm. Có 4% sản phẩm do máy I photo bị lỗi và 5% sản phẩm do máy II photo bị lỗi. Một sản phẩm được lấy ra ngẫu nhiên để kiểm tra.
a) Nếu sản phẩm được photo bởi máy I thì xác suất sản phẩm đó bị lỗi là 0,04.
b) Xác suất để sản phẩm lấy ra được photo bởi máy II và không bị lỗi là 0,384.
c) Xác suất để sản phẩm lấy ra không bị lỗi là 0,046.
d) Nếu sản phẩm lấy ra bị lỗi, xác suất để nó được photo bởi máy II bằng \(\frac{{15}}{{23}}\).
Quảng cáo
Trả lời:
Gọi A là biến cố “Sản phẩm đó photo bởi máy I”;
B là biến cố “Sản phẩm đó photo bị lỗi”.
a) \(P\left( {B|A} \right) = 0,04\)\( \Rightarrow P\left( {\overline B |A} \right) = 1 - 0,04 = 0,96\).
b) \(P\left( {B|\overline A } \right) = 0,05\) \( \Rightarrow P\left( {\overline B |\overline A } \right) = 1 - 0,05 = 0,95\).
c) \(\overline B \) là biến cố “Sản phẩm lấy ra không bị lỗi”.
Ta có \(P\left( {\overline B } \right) = P\left( A \right).P\left( {\overline B |A} \right) + P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right)\)\( = 0,4.0,96 + 0,6.0,95 = 0,954\).
d) \(P\left( B \right) = 1 - 0,954 = 0,046\).
Tính \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,6.0,05}}{{0,046}} = \frac{{15}}{{23}}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Bệnh nhân đó hồi phục sau đột quỵ”;
B là biến cố “Bệnh nhân đó được điều trị trong 6 giờ đầu”.
Theo đề ta có \(P\left( A \right) = 0,35;P\left( B \right) = 0,4;P\left( {AB} \right) = 0,3\).
a) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,35}} \approx 0,86\).
b) \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4 - 0,3}}{{0,4}} = \frac{1}{4}\).
c) \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{P\left( A \right) - P\left( {AB} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,35 - 0,3}}{{0,6}} = \frac{1}{{12}}\).
d) Có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{{P\left( {AB} \right)}}{{P\left( B \right).P\left( {A|\overline B } \right)}} = \frac{{0,3}}{{0,4.\frac{1}{{12}}}} = 9\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Sai.
Lời giải
Chọn B
Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.
Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).
Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).
Câu 3
A. \(\frac{3}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

