PHẦN III. TRẢ LỜI NGẮN
Trong một cuộc khảo sát về việc có chơi thể thao hay không có 40% nam và 60% nữ tham gia. Kết quả cho thấy có 30% nam và 50% nữ không chơi thể thao. Chọn ngẫu nhiên một người trong số người được khảo sát. Biết người đó chơi thể thao. Tính xác suất để người được chọn là nam (kết quả làm tròn đến hàng phần trăm).
PHẦN III. TRẢ LỜI NGẮN
Trong một cuộc khảo sát về việc có chơi thể thao hay không có 40% nam và 60% nữ tham gia. Kết quả cho thấy có 30% nam và 50% nữ không chơi thể thao. Chọn ngẫu nhiên một người trong số người được khảo sát. Biết người đó chơi thể thao. Tính xác suất để người được chọn là nam (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi A là biến cố “Người được chọn là nam”; B là biến cố “Người được chọn chơi thể thao”.
Theo đề ta có \(P\left( A \right) = 0,4;P\left( {\overline A } \right) = 0,6;P\left( {B|A} \right) = 0,7;P\left( {B|\overline A } \right) = 0,5\).
Có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,5 = \frac{{29}}{{50}}\).
Áp dụng công thức Bayes ta có:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4.0,7}}{{\frac{{29}}{{50}}}} = \frac{{14}}{{29}} \approx 0,48\).
Trả lời: 0,48.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.
Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).
Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).
Lời giải
Gọi A là biến cố “Bệnh nhân đó hồi phục sau đột quỵ”;
B là biến cố “Bệnh nhân đó được điều trị trong 6 giờ đầu”.
Theo đề ta có \(P\left( A \right) = 0,35;P\left( B \right) = 0,4;P\left( {AB} \right) = 0,3\).
a) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,35}} \approx 0,86\).
b) \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4 - 0,3}}{{0,4}} = \frac{1}{4}\).
c) \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{P\left( A \right) - P\left( {AB} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,35 - 0,3}}{{0,6}} = \frac{1}{{12}}\).
d) Có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{{P\left( {AB} \right)}}{{P\left( B \right).P\left( {A|\overline B } \right)}} = \frac{{0,3}}{{0,4.\frac{1}{{12}}}} = 9\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Sai.
Câu 3
A. \(\frac{3}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

