Câu hỏi:

26/10/2025 46 Lưu

PHẦN III. TRẢ LỜI NGẮN

Trong một cuộc khảo sát về việc có chơi thể thao hay không có 40% nam và 60% nữ tham gia. Kết quả cho thấy có 30% nam và 50% nữ không chơi thể thao. Chọn ngẫu nhiên một người trong số người được khảo sát. Biết người đó chơi thể thao. Tính xác suất để người được chọn là nam (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố “Người được chọn là nam”; B là biến cố “Người được chọn chơi thể thao”.

Theo đề ta có \(P\left( A \right) = 0,4;P\left( {\overline A } \right) = 0,6;P\left( {B|A} \right) = 0,7;P\left( {B|\overline A } \right) = 0,5\).

Có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,5 = \frac{{29}}{{50}}\).

Áp dụng công thức Bayes ta có:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4.0,7}}{{\frac{{29}}{{50}}}} = \frac{{14}}{{29}} \approx 0,48\).

Trả lời: 0,48.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Bệnh nhân đó hồi phục sau đột quỵ”;

B là biến cố “Bệnh nhân đó được điều trị trong 6 giờ đầu”.

Theo đề ta có \(P\left( A \right) = 0,35;P\left( B \right) = 0,4;P\left( {AB} \right) = 0,3\).

a) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,35}} \approx 0,86\).

b) \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( B \right)}} = \frac{{P\left( B \right) - P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4 - 0,3}}{{0,4}} = \frac{1}{4}\).

c) \(P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{P\left( A \right) - P\left( {AB} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,35 - 0,3}}{{0,6}} = \frac{1}{{12}}\).

d) Có \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\overline B } \right)}} = \frac{{P\left( {AB} \right)}}{{P\left( B \right).P\left( {A|\overline B } \right)}} = \frac{{0,3}}{{0,4.\frac{1}{{12}}}} = 9\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

Câu 2

A. 10%.                       
B. 77%.                       
C. 90%.                                   
D. 50%.

Lời giải

Chọn B

Gọi A là biến cố “Người đó thực sự bị mắc bệnh”; B là biến cố “người đó có kết quả xét nghiệm dương tính”.

Theo đề ta có \(P\left( A \right) = \frac{{120}}{{1000}} = \frac{3}{{25}}\); \(P\left( B \right) = \frac{{130}}{{1000}} = \frac{{13}}{{100}}\); \(P\left( {B|A} \right) = \frac{{100}}{{120}} = \frac{{10}}{{12}}\).

Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{25}}.\frac{{10}}{{12}}}}{{\frac{{13}}{{100}}}} \approx 77\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP