Câu hỏi:

26/10/2025 14 Lưu

Thống kê hồ sơ 250 học sinh khối 10 trong đó có 150 học sinh nữ và 100 học sinh nam. Sau khi thống kê, kết quả có 60% học sinh nữ là đoàn viên, 50% học sinh nam là đoàn viên; những học sinh còn lại không là đoàn viên. Chọn ngẫu nhiên một học sinh trong 250 học sinh khối 10. Tính xác suất để học sinh được chọn là đoàn viên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số học sinh nữ là đoàn viên là 60%.150 = 90 học sinh.

Số học sinh nam là đoàn viên là 50%.100 = 50 học sinh.

Gọi A là biến cố “Chọn được học sinh là đoàn viên”; B là biến cố “Chọn được học sinh nam”.

Ta có \(P\left( B \right) = \frac{{100}}{{250}} = \frac{2}{5} \Rightarrow P\left( {\overline B } \right) = \frac{3}{5}\); \(P\left( {A|B} \right) = \frac{{50}}{{100}} = 0,5;P\left( {A|\overline B } \right) = \frac{{90}}{{150}} = 0,6\).

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\)\( = \frac{2}{5}.0,5 + \frac{3}{5}.0,6 = 0,56\).

Trả lời: 0,56.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Lấy được viên bi màu trắng từ hộp I bỏ sang hộp II”;

B là biến cố “Lấy được viên bi màu trắng từ hộp II”.

Theo đề ta có \(P\left( A \right) = \frac{5}{{10}} = \frac{1}{2} \Rightarrow P\left( {\overline A } \right) = \frac{1}{2}\); \(P\left( {B|A} \right) = \frac{7}{{11}};P\left( {B|\overline A } \right) = \frac{6}{{11}}\).

Có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{1}{2}.\frac{7}{{11}} + \frac{1}{2}.\frac{6}{{11}} = \frac{{13}}{{22}}\).

Theo công thức Bayes:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{2}.\frac{7}{{11}}}}{{\frac{{13}}{{22}}}} = \frac{7}{{13}}\).

Suy ra \(a = 7;b = 13\). Do đó \(S = {a^2} + {b^2} = 218\).

Trả lời: 218.

Lời giải

Theo đề ta có \(P\left( A \right) = 0,85 \Rightarrow P\left( {\overline A } \right) = 0,15\); \(P\left( {\overline B |A} \right) = 0,01;P\left( {\overline B |\overline A } \right) = 0,04\).

a) \(P\left( A \right) = 0,85\).

b) \(P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,01 = 0,99\).

c) \(P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,04 = 0,96\).

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,85.0,99 + 0,15.0,96 = 0,9855\).

d) \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,85.0,99}}{{0,9855}} \approx 0,85\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 5

A. \(\frac{{20}}{{23}}\).                                  
B. \(\frac{{19}}{{21}}\). 
C. \(\frac{{19}}{{23}}\).  
D. \(\frac{{20}}{{21}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP