Câu hỏi:

27/10/2025 178 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Phương trình \[\sin x = \frac{{\sqrt 3 }}{2}\] có nghiệm là

A. \[x = \pm \frac{\pi }{3} + k2\pi \].          
B. \[\left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\].              
C. \[\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\]. 
D. \[x = \frac{\pi }{3} + k\pi \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[\sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\], với \[k \in \mathbb{Z}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M\), (ảnh 1)

Gọi \(J = SO \cap MN\), \(K = SA \cap PJ\) thì \(K = SA \cap \left( {MNP} \right)\).

Vì \(M\), \(N\) lần lượt là trung điểm của \(SB\), \(SD\) nên \(J\) là trung điểm của \(SO\).

Áp dụng định lí Menelaus vào tam giác \(SAO\) với cát tuyến là \(KP\), ta có

\(\frac{{SK}}{{KA}} \cdot \frac{{AP}}{{PO}} \cdot \frac{{OJ}}{{JS}} = 1 \Leftrightarrow \frac{{SK}}{{KA}} \cdot 3 \cdot 1 = 1 \Leftrightarrow \frac{{KS}}{{KA}} = \frac{1}{3}.\)

Vậy \(\frac{{KS}}{{KA}} = \frac{1}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{m = 1}\\{n = 3.}\end{array}} \right.\)

Lời giải

a)

S

b)

Đ

c)

Đ

d)

S

 

Ta có: \(2\sin x = \sqrt 2  \Leftrightarrow \sin x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{4}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{4} + k2\pi }\\{x = \pi  - \frac{\pi }{4} + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{4} + k2\pi }\\{x = \frac{{3\pi }}{4} + k2\pi }\end{array}(k \in \mathbb{Z}).} \right.} \right.\)

Vậy phương trình có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;x = \frac{{3\pi }}{4} + k2\pi (k \in \mathbb{Z})\).

Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{\pi }{4}\)

Số nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là một nghiệm

Câu 3

A. Qua hai đường thẳng phân biệt cắt nhau xác định được một và chỉ một mặt phẳng.             
B. Qua ba điểm phân biệt xác định được một và chỉ một mặt phẳng.
C. Qua hai đường thẳng song song xác định được một và chỉ một mặt phẳng.              
D. Qua một đường thẳng và một điểm nằm ngoài đường thẳng xác định được một và chỉ một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP