Câu hỏi:

27/10/2025 107 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hình chóp \(S.ABCD\). Có bao nhiêu cạnh của hình chóp chéo nhau với cạnh \(AB\)?

A. \(2\).                       
B. \(3\).                       
C. \(4\).      
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Có \(2\) cạnh của hình chóp chéo nhau với cạnh \(AB\) là \(SC\) và \(SD\). Chọn A (ảnh 1)

Có \(2\) cạnh của hình chóp chéo nhau với cạnh \(AB\) là \(SC\) và \(SD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({u_n}\)là số tiền máy tính sử dụng năm thứ n.

Giá trị máy tính giảm \(10\% \) so với giá trị của nó trong năm liền trước đó.

\( \Rightarrow \left( {{u_n}} \right)\)là CSN với \({u_1} = 680\)nghìn đồng và công bội \(q = 1 - 0,1 = 0,9\) nghìn đồng.

Giá trị của chiếc máy tính sau 7 năm sử dụng \({u_8} = 680.0,{9^7} \approx 325,242\)nghìn đồng.

Lời giải

Tứ giác \(ABCD\) là hình chữ nhật nên \({x_C} = {x_B}\,,\,{x_D} = {x_A}\,,\,{y_A} = {y_B}\).

Khi đó: \({y_A} = {y_B} \Leftrightarrow \sin \left( {{x_A}} \right) = \sin \left( {{x_B}} \right) \Leftrightarrow \sin \left( {{x_D}} \right) = \sin \left( {{x_C}} \right) \Leftrightarrow \left[ \begin{array}{l}{x_D} = {x_C} + k2\pi \\{x_D} = \pi  - {x_C} + k2\pi \end{array} \right.\)

Do xét trên đoạn \(\left[ {0;\pi } \right]\) và \({x_C} - {x_D} = CD = \frac{{2\pi }}{3}\) nên ta có hệ:

\(\left\{ \begin{array}{l}{x_C} - {x_D} = \frac{{2\pi }}{3}\\{x_C} + {x_D} = \pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = \frac{{5\pi }}{6}\\{x_D} = \frac{\pi }{6}\end{array} \right.\). Vậy \(BC = {y_B} = \sin \left( {{x_B}} \right) = \sin \left( {{x_C}} \right) = \sin \left( {\frac{{5\pi }}{6}} \right) = \frac{1}{2}\).

Câu 5

A. Hình tam giác.       
B. Hình lục giác.         
C. Hình ngũ giác.                                   
D. Hình tứ giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP