Câu hỏi:

27/10/2025 38 Lưu

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(I,J\) lần lượt là trọng tâm của các tam giác \(ABC\)\(A'B'C'\). Thiết diện tạo bởi mặt phẳng \(\left( {AIJ} \right)\) với hình lăng trụ đã cho là              

A. tam giác vuông.     
B. tam giác cân.          
C. hình bình hành.                                 
D. hình thang.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Chọn A  Vì tứ giác \[ABC (ảnh 1)

Gọi \(M,N\) lần lượt là trung điểm của \(BC,B'C'\). Khi ấy, theo tính chất trọng tâm ta có \(A,I,M\) thẳng hàng và \(A',J,N\) thẳng hàng. Tứ giác \(BMNB'\) là hình bình hành (vì \(BM//B'N\) và \(BM = B'N\)) nên \(MN//BB'\) và \(MN = BB'\); mặt khác \(AA'//BB'\) và \(AA' = BB'\). Từ đó ta có \(MN = AA'\) và \(MN//AA'\) nên \(AA'NM\) là hình bình hành. Khi ấy các điểm \(A,I,M,N,J,A'\) đồng phẳng nên \(\left( {AIJ} \right) \equiv \left( {AA'NM} \right)\) và thiết diện tạo bởi \(\left( {AIJ} \right)\) với hình lăng trụ \(ABC.A'B'C'\) là hình bình hành \(AA'NM\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

\(\begin{array}{l}x = {x_A} + {x_B} = 5\cos \left( {50\pi t - \frac{\pi }{6}} \right) + 5\cos \left( {50\pi t + \frac{\pi }{3}} \right) = 2 \cdot 5\cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\cos \left( { - \frac{\pi }{4}} \right){\rm{ }}\\ \Rightarrow {\rm{ }}x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\end{array}\)

Ta có \(x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right) \le 5\sqrt 2 \). Vậy sóng tổng hợp cao nhất khi \(\cos \left( {50\pi t + \frac{\pi }{{12}}} \right) = 1 \Leftrightarrow 50\pi t + \frac{\pi }{{12}} = k2\pi  \Leftrightarrow t =  - \frac{1}{{600}} + \frac{k}{{25}}\) (giây) với \(k \in {\mathbb{N}^*}\).

Lời giải

a)

S

b)

S

c)

S

d)

Đ

 


(Đúng) Đường thẳng \(BC\) song song với \((SAD\)
(Vì): Ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\not  \subset (SAD)}\\{BC\parallel AD}\\{AD \subset (SAD)}\end{array}} \right.\) nên \(BC\parallel (SAD)\).
(Sai) \(MO\) là giao tuyến của \((SAC)\) và \((SBD)\)
(Vì):
\( \bullet \) Ta có \(S \in (SBD) \cap (SAC)(1)\).
\( \bullet \) Mà \(\left\{ {\begin{array}{*{20}{l}}{O \in AC \subset (SAC)}\\{O \in BD \subset (SBD)}\end{array}} \right. \Rightarrow O \in (SBD) \cap (SAC)(2)\).
Từ \((1)\) và \((2)\), suy ra \((SBD) \cap (SAC) = SO\).
(Sai) Đường thẳng \(BM\) song song với \((SAD)\)
(Vì):

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 1)


\(\left\{ {\begin{array}{*{20}{l}}{S \in (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD)}\\{BC\parallel AD}\end{array}} \right. \Rightarrow (SBC) \cap (SAD) = d\parallel BC\parallel AD\;(d{\rm{ di qua }}S)\).
Trong \((SBC)\), gọi \(I\) là giao điểm của \(BM\) và \(d\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{I \in BM}\\{I \in d \subset (SAD)}\end{array}} \right. \Rightarrow BM \cap (SAD) = I\).
(Sai) Gọi \(N\) là điểm thuộc cạnh \(SB\) sao cho \(SN = \frac{1}{3}SB\), khi đó \(N\) là giao điểm của đường thẳng \(SB\) và \((AMD)\)
(Vì):

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 2)


Xét  có \(SO\), \(AM\) là trung tuyến nên gọi \(G\) là giao điểm của \(SO\) và \(AM\) thì \(G\) là trọng tâm của .
Xét  có \(SO\) là đường trung tuyến và \(SG = 2GO\) nên \(G\) cũng là trọng tâm của .
Trong \((SBD)\), gọi \(J\) là giao điểm của \(DG\) và \(SB\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{J \in SB}\\{J \in DG \subset (ADM)}\end{array}} \right. \Rightarrow SB \cap (ADM) = J.\)
Mặt khác, \(G\) là trọng tâm của  nên \(J\) là trung điểm của \(SB \Rightarrow SJ = \frac{1}{2}SB\).
Mà \(SN = \frac{1}{3}SB\) nên \(N\) và \(J\) là hai điểm phân biệt.

Câu 5

A. Song song hoặc cắt nhau.                          
B. Chéo nhau.              
C. Cắt nhau.                                                   
D. Song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP