Cho hình lăng trụ \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BB'\) và \(CC'\). Gọi \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( {AMN} \right)\) và \(\left( {A'B'C'} \right)\). Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
Chọn A

Theo bài ra ta có: \(BC\,{\rm{//}}\,MN{\rm{//}}\,B'C'\).
Trong \(\left( {ACC'A'} \right)\) gọi \(I = AN \cap A'C'\).
Khi đó hai mặt phẳng \(\left( {AMN} \right)\) và \(\left( {A'B'C'} \right)\) có điểm chung \(I\) và lần lượt đi qua hai đường thẳng song song \(MN\); \(B'C'\).
Do đó, giao tuyến của hai mặt phẳng \(\left( {AMN} \right)\) và \(\left( {A'B'C'} \right)\) là đường thẳng \(\Delta \) qua \(I\) và song song với \(B'C'\)\( \Rightarrow \Delta \,{\rm{//}}\,BC\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Một bức tường có \[2,72:0,08 = 34\] hàng gạch.
Số gạch ở mỗi hàng tạo thành một cấp số cộng với số hạng đầu \[{u_1} = 1\] và công sai \[d = 1\].
Số viên gạch trên một bức tường: \[{S_{34}} = 34.1 + \frac{{34.33}}{2}.1 = 595\] viên gạch.
Vì 4 mặt đều bằng nhau nên có \[4.595 = 2380\] viên gạch người chủ dự tính đặt mua.
Lời giải

Chọn mặt phẳng \(\left( {SAC} \right)\) chứa AM. Gọi O là giao điểm của AC và BD trong \(\left( {ABCD} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right)\end{array} \right.\) \( \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\) \( \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\)
Gọi I là giao điểm của AM và SO trong mặt phẳng \(\left( {SAC} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}I \in AM\\I \in SO \subset \left( {SBD} \right)\end{array} \right.\)\( \Rightarrow I = AM \cap \left( {SBD} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
