Người ta trồng \[3003\] cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng \[1\] cây, hàng thứ hai trồng \[2\] cây, hàng thứ ba trồng \[3\] cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là
Quảng cáo
Trả lời:
Chọn A
Gọi số cây ở hàng thứ \[n\] là \[{u_n}\].
Ta có: \[{u_1} = 1\], \[{u_2} = 2\], \[{u_3} = 3\], … và \[S = {u_1} + {u_2} + {u_3} + ... + {u_n} = 3003\].
Nhận xét dãy số \[\left( {{u_n}} \right)\] là cấp số cộng có \[{u_1} = 1\], công sai \[d = 1\].
Khi đó \[S = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\] \[ = 3003\] .
Suy ra \[\frac{{n\left[ {2.1 + \left( {n - 1} \right)1} \right]}}{2} = 3003\] \[ \Leftrightarrow n\left( {n + 1} \right) = 6006\] \[ \Leftrightarrow {n^2} + n - 6006 = 0\] \[ \Leftrightarrow \left[ \begin{array}{l}n = 77\\n = - 78\end{array} \right.\] \[ \Leftrightarrow n = 77\] (vì \[n \in \mathbb{N}\]) .
Vậy số hàng cây được trồng là \[77\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Một bức tường có \[2,72:0,08 = 34\] hàng gạch.
Số gạch ở mỗi hàng tạo thành một cấp số cộng với số hạng đầu \[{u_1} = 1\] và công sai \[d = 1\].
Số viên gạch trên một bức tường: \[{S_{34}} = 34.1 + \frac{{34.33}}{2}.1 = 595\] viên gạch.
Vì 4 mặt đều bằng nhau nên có \[4.595 = 2380\] viên gạch người chủ dự tính đặt mua.
Lời giải

Chọn mặt phẳng \(\left( {SAC} \right)\) chứa AM. Gọi O là giao điểm của AC và BD trong \(\left( {ABCD} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right)\end{array} \right.\) \( \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\) \( \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\)
Gọi I là giao điểm của AM và SO trong mặt phẳng \(\left( {SAC} \right)\).
\( \Rightarrow \left\{ \begin{array}{l}I \in AM\\I \in SO \subset \left( {SBD} \right)\end{array} \right.\)\( \Rightarrow I = AM \cap \left( {SBD} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
