Người ta trồng \[3003\] cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng \[1\] cây, hàng thứ hai trồng \[2\] cây, hàng thứ ba trồng \[3\] cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Chọn A
Gọi số cây ở hàng thứ \[n\] là \[{u_n}\].
Ta có: \[{u_1} = 1\], \[{u_2} = 2\], \[{u_3} = 3\], … và \[S = {u_1} + {u_2} + {u_3} + ... + {u_n} = 3003\].
Nhận xét dãy số \[\left( {{u_n}} \right)\] là cấp số cộng có \[{u_1} = 1\], công sai \[d = 1\].
Khi đó \[S = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\] \[ = 3003\] .
Suy ra \[\frac{{n\left[ {2.1 + \left( {n - 1} \right)1} \right]}}{2} = 3003\] \[ \Leftrightarrow n\left( {n + 1} \right) = 6006\] \[ \Leftrightarrow {n^2} + n - 6006 = 0\] \[ \Leftrightarrow \left[ \begin{array}{l}n = 77\\n = - 78\end{array} \right.\] \[ \Leftrightarrow n = 77\] (vì \[n \in \mathbb{N}\]) .
Vậy số hàng cây được trồng là \[77\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Một bức tường có \[2,72:0,08 = 34\] hàng gạch.
Số gạch ở mỗi hàng tạo thành một cấp số cộng với số hạng đầu \[{u_1} = 1\] và công sai \[d = 1\].
Số viên gạch trên một bức tường: \[{S_{34}} = 34.1 + \frac{{34.33}}{2}.1 = 595\] viên gạch.
Vì 4 mặt đều bằng nhau nên có \[4.595 = 2380\] viên gạch người chủ dự tính đặt mua.
Lời giải
Ta thấy số tấm pin mặt trời mà công ty X lắp đặt hàng tháng lập thành một cấp số nhân \(({u_n})\). Trong đó \[{u_1} = 1200\] tấm và công bội \(q = 1,21\).
Vì công ty cần công suất khoảng \({\rm{2426000W}}p\) để vận hành nên cần phải lắp đặt ít nhất \[5514\] tấm pin mặt trời nghĩa là \[{u_n} = 5514\] tấm.
Mà \[{u_n} = {u_1}.{q^{n - 1}}\] nên \[5514 = 1200.{(1,21)^{n - 1}} \Leftrightarrow n - 1 \approx 8 \Leftrightarrow n \approx 9\].
Vậy công ty cần công suất khoảng \({\rm{2426000W}}p\)để vận hành thì phải lắp pin mặt trời trong ít nhất 9 tháng mới đủ công suất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
