Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình \(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\). Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có
\(\begin{array}{l}2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0 \Leftrightarrow {\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\end{array}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay
\(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Một bức tường có \[2,72:0,08 = 34\] hàng gạch.
Số gạch ở mỗi hàng tạo thành một cấp số cộng với số hạng đầu \[{u_1} = 1\] và công sai \[d = 1\].
Số viên gạch trên một bức tường: \[{S_{34}} = 34.1 + \frac{{34.33}}{2}.1 = 595\] viên gạch.
Vì 4 mặt đều bằng nhau nên có \[4.595 = 2380\] viên gạch người chủ dự tính đặt mua.
Lời giải
Ta thấy số tấm pin mặt trời mà công ty X lắp đặt hàng tháng lập thành một cấp số nhân \(({u_n})\). Trong đó \[{u_1} = 1200\] tấm và công bội \(q = 1,21\).
Vì công ty cần công suất khoảng \({\rm{2426000W}}p\) để vận hành nên cần phải lắp đặt ít nhất \[5514\] tấm pin mặt trời nghĩa là \[{u_n} = 5514\] tấm.
Mà \[{u_n} = {u_1}.{q^{n - 1}}\] nên \[5514 = 1200.{(1,21)^{n - 1}} \Leftrightarrow n - 1 \approx 8 \Leftrightarrow n \approx 9\].
Vậy công ty cần công suất khoảng \({\rm{2426000W}}p\)để vận hành thì phải lắp pin mặt trời trong ít nhất 9 tháng mới đủ công suất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
