Câu hỏi:

27/10/2025 104 Lưu

Cho phương trình \(\left( {2\sin x - 1} \right)\left( {\cos x + 1} \right) = 0\). Xét tính đúng sai của các khẳng định sau.

a) \(x = \frac{\pi }{6}\)là một nghiệm của phương trình.

b) Nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - 7\pi }}{6}\).

c) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x =  - \frac{\pi }{6} + k2\pi }\\{x = \pi  + k2\pi }\end{array}} \right.\).

d) Tổng các nghiệm của phương trình thuộc nửa khoảng \(\left[ { - 2\pi ;3\pi } \right)\) bằng \(3\pi \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

Đ

b)

S

c)

S

d)

Đ

 

 

(Đúng) \(x = \frac{\pi }{6}\) là một nghiệm của phương trình

(Vì): Thay \(x = \frac{\pi }{6}\) thỏa mãn phương trình.

(Sai) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = - \frac{\pi }{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\)

(Vì): Ta có \(\left( {2\sin x - 1} \right)\left( {\cos x + 1} \right) = 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = \frac{1}{2}}\\{\cos x = - 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).

(Sai) Nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - 7\pi }}{6}\)

(Vì): Với \(x = \frac{\pi }{6} + k2\pi < 0 \Rightarrow k \le - 1\). Nghiệm âm lớn nhất là \(x = \frac{{ - 11\pi }}{6}\). Với \(x = \frac{{5\pi }}{6} + k2\pi < 0 \Rightarrow k \le - 1\). Nghiệm âm lớn nhất là \(x = \frac{{ - 7\pi }}{6}\). Với x=5π6+k2π<0k1. Nghiệm âm lớn nhất là \(x = - \pi \).

(Đúng) Tổng các nghiệm của phương trình thuộc nửa khoảng \(\left[ { - 2\pi ;3\pi } \right)\) bằng \(3\pi \)

(Vì): Theo ý trên ta thấy phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).

TH 1: Với \(x = \frac{\pi }{6} + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi < \frac{\pi }{6} + k2\pi < 3\pi \Rightarrow - 1 \le k \le 1 \Rightarrow T = \frac{\pi }{2}\).

TH 2: \(x = \frac{{5\pi }}{6} + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi \le \frac{{5\pi }}{6} + k2\pi < 3\pi \Rightarrow - 1 \le k \le 1 \Rightarrow T = \frac{{5\pi }}{2}\).

TH 3: \(x = \pi + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi \le \pi + k2\pi < 3\pi \Rightarrow - 1 \le k < 1 \Rightarrow T = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo giả thiết ta có công thức tăng trưởng dân số \({P_n} = {P_0}.{\left( {1 + r} \right)^n}\).

Trong đó \({P_0} = 97,58\,\) và \(r = 1,14\% \);\(n = 2025 - 2020 = 5\).

Vậy từ năm 2020 đến thì 2025 dân số nước ta là \(97,58.1,{0114^5} \approx 103\) (triệu người).

Lời giải

Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình thang, đáy lớn \[AB\]. Gọi \[N,P\] lần lượt là trung điểm của \[SA,SB\]. \[M\] là một điểm tùy ý thuộc đoạn \[SD\] (\[M\] không trùng với \[D\]). Tìm giao điểm của \[SC\] với \[(MNP)\] (ảnh 1)

Chọn \({\rm{mp}}\left( {SBC} \right)\) chứa \[SC\]

Ta có \(FP = \left( {MNP} \right) \cap \left( {SBC} \right)\)

Gọi \(G = FP \cap SC\)

Suy ra \(G = SC \cap \left( {MNP} \right)\)

Câu 5

A. Hình bình hành.    
B. Tam giá                
C. Hình chữ nhật.                                   
D.  Hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP