Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình thang, đáy lớn \[AB\]. Gọi \[N,P\] lần lượt là trung điểm của \[SA,SB\]. \[M\] là một điểm tùy ý thuộc đoạn \[SD\] (\[M\] không trùng với \[D\]). Tìm giao điểm của \[SC\] với \[(MNP)\]
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
![Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình thang, đáy lớn \[AB\]. Gọi \[N,P\] lần lượt là trung điểm của \[SA,SB\]. \[M\] là một điểm tùy ý thuộc đoạn \[SD\] (\[M\] không trùng với \[D\]). Tìm giao điểm của \[SC\] với \[(MNP)\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/2-1761549756.jpg)
Chọn \({\rm{mp}}\left( {SBC} \right)\) chứa \[SC\]
Ta có \(FP = \left( {MNP} \right) \cap \left( {SBC} \right)\)
Gọi \(G = FP \cap SC\)
Suy ra \(G = SC \cap \left( {MNP} \right)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo giả thiết ta có công thức tăng trưởng dân số \({P_n} = {P_0}.{\left( {1 + r} \right)^n}\).
Trong đó \({P_0} = 97,58\,\) và \(r = 1,14\% \);\(n = 2025 - 2020 = 5\).
Vậy từ năm 2020 đến thì 2025 dân số nước ta là \(97,58.1,{0114^5} \approx 103\) (triệu người).
Lời giải
|
a) |
Đ |
b) |
Đ |
c) |
S |
d) |
S |
(Đúng) \(II'\parallel BB'\)
(Vì): Đúng.
Ta có \(I'\), \(I\) là trung điểm của \(B'C'\) và \(BC\).
Suy ra \(II'\) là đường trung bình của hình bình hành \(BB'C'C\).
Suy ra \(II' = BB'\) và \(II'\parallel BB'\).
(Đúng) \(AA'I'I\) là hình bình hành
(Vì): Đúng.
Ta có \(\left\{ {\begin{array}{*{20}{l}}{II'\parallel AA'(\parallel BB')}\\{II' = AA'( = BB')}\end{array}} \right.\) suy ra \(AA'I'I\) là hình bình hành.
(Sai) \(IA'\) song song \((AB'C')\)
(Vì): Sai.
Trong \((IAA'I')\), gọi \(E = AI' \cap A'I\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{E \in AI';AI' \subset (AB'C')}\\{E \in A'I}\end{array}} \right.\) suy ra \(E = A'I \cap (AB'C')\).
(Sai) Giao tuyến của \((AB'C')\) và \((A'BC')\) là đường thẳng đi qua giao điểm của hai đường thẳng \(AI'\), \(A'I\)
(Vì): Sai.
Trong \((AA'B'B)\), gọi \(F = AB' \cap A'B\).
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{F \in AB';AB' \subset (ABC')}\\{F \in A'B;A'B \subset (A'BC')}\end{array}} \right. \Rightarrow F \in (ABC') \cap (A'BC')\). (1)
Ta có \(E = AI' \cap A'I\).
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{C' \in (ABC')}\\{C' \in (A'BC')}\end{array}} \right. \Rightarrow C' \in (ABC') \cap (A'BC')\). (2)
Từ \((1)\) và \((2)\) suy ra \(C'F = (ABC') \cap (A'BC')\).
Ta thấy \(\left\{ {\begin{array}{*{20}{l}}{EF\parallel C'B'}\\{C'F\not \parallel C'B'}\end{array}} \right. \Rightarrow E\), \(F\), \(C'\) không thẳng hàng.
Hay giao tuyển của hai mặt phẳng không đi qua \(E\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

