Câu hỏi:

27/10/2025 543 Lưu

Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình thang, đáy lớn \[AB\]. Gọi \[N,P\] lần lượt là trung điểm của \[SA,SB\]. \[M\] là một điểm tùy ý thuộc đoạn \[SD\] (\[M\] không trùng với \[D\]). Tìm giao điểm của \[SC\] với \[(MNP)\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình thang, đáy lớn \[AB\]. Gọi \[N,P\] lần lượt là trung điểm của \[SA,SB\]. \[M\] là một điểm tùy ý thuộc đoạn \[SD\] (\[M\] không trùng với \[D\]). Tìm giao điểm của \[SC\] với \[(MNP)\] (ảnh 1)

Chọn \({\rm{mp}}\left( {SBC} \right)\) chứa \[SC\]

Ta có \(FP = \left( {MNP} \right) \cap \left( {SBC} \right)\)

Gọi \(G = FP \cap SC\)

Suy ra \(G = SC \cap \left( {MNP} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo giả thiết ta có công thức tăng trưởng dân số \({P_n} = {P_0}.{\left( {1 + r} \right)^n}\).

Trong đó \({P_0} = 97,58\,\) và \(r = 1,14\% \);\(n = 2025 - 2020 = 5\).

Vậy từ năm 2020 đến thì 2025 dân số nước ta là \(97,58.1,{0114^5} \approx 103\) (triệu người).

Lời giải

Giải phương trình \(\frac{{48}}{{10}}\sin \frac{x}{9} = 0 \Leftrightarrow \sin \frac{x}{9} = 0 \Leftrightarrow \frac{x}{9} = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = 9k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Dựa vào hình vẽ, ta có:

Khi \(k = 0 \Rightarrow x = 0\).

Khi \(k = 1 \Rightarrow x = 9\pi  \approx 28,27\).

Vậy: \(OA = {x_A} - {x_O} = 9\pi  - 0 = 9\pi  \approx 28,3\,\,\left( m \right)\)

Câu 4

A. Hình bình hành.    
B. Tam giá                
C. Hình chữ nhật.                                   
D.  Hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP