Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(O\) là giao điểm của \(AC\) và \(BD;M,N\) lần lượt là trung điểm của \(SB,SD;P\) thuộc đọan \(SC\) và không là trung điểm của \(SC\).Khi đó:
a) Giao điểm \(E\) của đường thẳng \(SO\) và mặt phẳng \((MNP)\) là giao điểm của \(MN\) và \(SO\).
b) Giao điểm \(Q\) đường thẳng \(SA\) và mặt phẳng \((MNP)\) là giao điểm của \(PE\) và \(SO\).
c) Gọi \(I,J,K\) lần lượt là giao điểm của \(QM\) và \(AB,QP\) và \(AC,QN\) và \(AD\). Vậy \(I,J,K\) không thẳng hàng.
d) Gọi \(I,J,K\) lần lượt là giao điểm của \(QM\) và \(AB,QP\) và \(AC,QN\) và \(AD\). Vậy \(I,J,K\) thẳng hàng.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(O\) là giao điểm của \(AC\) và \(BD;M,N\) lần lượt là trung điểm của \(SB,SD;P\) thuộc đọan \(SC\) và không là trung điểm của \(SC\).Khi đó:
a) Giao điểm \(E\) của đường thẳng \(SO\) và mặt phẳng \((MNP)\) là giao điểm của \(MN\) và \(SO\).
b) Giao điểm \(Q\) đường thẳng \(SA\) và mặt phẳng \((MNP)\) là giao điểm của \(PE\) và \(SO\).
c) Gọi \(I,J,K\) lần lượt là giao điểm của \(QM\) và \(AB,QP\) và \(AC,QN\) và \(AD\). Vậy \(I,J,K\) không thẳng hàng.
d) Gọi \(I,J,K\) lần lượt là giao điểm của \(QM\) và \(AB,QP\) và \(AC,QN\) và \(AD\). Vậy \(I,J,K\) thẳng hàng.
Quảng cáo
Trả lời:
|
a) |
Đ |
b) |
S |
c) |
S |
d) |
Đ |

a. Trong \((SBD):SO \cap MN = E\).
\({\rm{ Ta c\'o }}\left\{ {\begin{array}{*{20}{l}}{E \in SO}\\{E \in MN \subset (MNP)}\end{array} \Rightarrow E \in SO \cap (MNP)} \right.{\rm{. }}\)
b. Trong \((SAC):PE \cap SA = Q\).
\({\rm{ Ta c\'o }}\left\{ {\begin{array}{*{20}{l}}{Q \in SA}\\{Q \in PE \subset (MNP)}\end{array} \Rightarrow Q \in SA \cap (MNP)} \right.{\rm{. }}\)
c. Từ giả thiết ta có \(\left\{ \begin{array}{l}I \in QM \subset \left( {MNP} \right)\\J \in QP \subset \left( {MNP} \right)\\K \in QN \subset \left( {MNP} \right)\end{array} \right. \Rightarrow I,J,K \in \left( {MNP} \right)\,\left( 1 \right)\)
Mặt khác \(\left\{ \begin{array}{l}I \in AB \subset \left( {ABCD} \right)\\J \in AC \subset \left( {ABCD} \right)\\K \in AD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow I,J,K \in \left( {ABCD} \right)\,(2)\)
Từ (1) và (2) suy ra \(I,J,K \in (MNP) \cap (ABCD)\).
Suy ra \(I,J,K\) thẳng hàng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khoảng cách \(h\) là \(3\) m khi
\(3\cos \left[ {\frac{\pi }{3}(2t - 1)} \right] = - 3 \Leftrightarrow \cos \left[ {\frac{\pi }{3}(2t - 1)} \right] = - 1 \Leftrightarrow \frac{\pi }{3}(2t - 1) = - \pi + k2\pi \Leftrightarrow t = - 1 + 3k,k \in \mathbb{Z}.\)
Vậy vào thời điểm \(t = - 1 + 3k,k \in \mathbb{Z}\) thì khoảng cách \(h\) là \(3\) m.
Khoảng cách \(h\) là \(0\) m khi
\(3\cos \left[ {\frac{\pi }{3}(2t - 1)} \right] = 0 \Leftrightarrow \cos \left[ {\frac{\pi }{3}(2t - 1)} \right] = 0 \Leftrightarrow \frac{\pi }{3}(2t - 1) = \frac{\pi }{2} + k\pi \Leftrightarrow t = \frac{5}{4} + \frac{3}{2}k,k \in \mathbb{Z}.\)
Vậy vào thời điểm \(t = \frac{5}{4} + \frac{3}{2}k,k \in \mathbb{Z}\) thì khoảng cách \(h\) là \(0\) m.
Lời giải
Số giờ nắng gắt trong ngày thứ \[n\] được tính bởi công thức: \(f\left( n \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {n - 80} \right)} \right] + 12\)
Vậy Tỉnh Quảng Nam chịu nhiều giờ nắng gắt nhất nghĩa là \(f\left( n \right)\) đạt giá trị lớn nhất
Ta có: \( - 1 \le \sin \left[ {\frac{\pi }{{182}}\left( {n - 80} \right)} \right] \le 1,\,\forall n\) \( \Rightarrow f\left( n \right) \le 15\)
Suy ra \(\max f\left( n \right) = 15 \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {n - 80} \right)} \right] = 1\)
\( \Leftrightarrow \frac{\pi }{{182}}\left( {n - 80} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow n = 171 + k.364,\forall k \in \mathbb{Z}\)
Mà \(0 < n \le 365\) nên \(n = 171\).
Đán án: 171
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
