Câu hỏi:

27/10/2025 124 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho tam giác \(ABC\) có ba góc \(A,\,B,\,C\)thỏa mãn đẳng thức \(\sin A = \cos B + \cos C\). Khẳng định nào sau đây là khẳng định đúng?              

A. Tam giác \(ABC\) là tam giác đều.           
B. Tam giác \(ABC\) vuông cân tại \(A\).             
C. Tam giác \(ABC\) vuông tại \(B\) hoặc \(C\). 
D. Tam giác \(ABC\)vuông tại \(B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Nếu tam giác \(ABC\) vuông cân tại \(A\), thì \(\sin A = \cos B + \cos C\)là đẳng thức đúng.

Vậy ta chọn phương án C .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có \(R = 60m = O{A_1}\), Suy ra trong tam giác \({A_1}O{B_1}\) ta có \({A_1}{B_1}^2 = 2O{A_1}^2 - 2O{A^2}_1.cos{120^0}\) \( \Rightarrow {A_1}{B_1}^2 = {2.60^2} + {2.60^2}.\frac{1}{2} = 10800{m^2}\)

Mà các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … có độ dài các cạnh là cấp số nhân với công bội \({q_c} = \frac{1}{2}\)

Nên diện tích các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … là cấp số nhân với công bội \({q_S} = \frac{1}{4}\)

\({S_1} = {S_{{A_1}{B_1}{C_1}}} = \frac{{{A_1}{B_1}^2.\sqrt 3 }}{4} = \frac{{10800\sqrt 3 }}{4} = 2700\sqrt 3 {m^2}\)

\({S_9} = {S_1}.{\left( {\frac{1}{4}} \right)^8} = 0,285{m^2}\)

Lời giải

Bác An gửi tiết kiệm vào ngân hàng 100 triệu đồng với hình thức lãi kép tức là số tiền lãi cộng vào tiền gốc và tiếp tục sinh lãi, kì hạn một năm với lãi suất \(4,7\% \)/năm. Tiền gốc và lãi hằng năm là cấp số nhân \({u_1} = 100\)triệu đồng, công bội \(q = 1 + 0,047\).

Bác An nhận được 10 năm: \({u_{11}} = 100{\left( {1 + 0,047} \right)^{10}} = 158,294\) triệu đồng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(SC\).                                                        
B. đường thẳng qua \(G\) và cắt\(BC\).              
C. đường thẳng qua \(G\) và song song với\(CD\).             
D. đường thẳng qua \(S\)và song song với\(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Song song nhau.                                        
B. Chéo nhau.              
C. Có thể song song hoặc cắt nhau.               
D. Cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP