Câu hỏi:

27/10/2025 134 Lưu

Cho hình chóp \[S.ABCD\]có đáy \[ABCD\]là hình bình hành tâm \[O\], \[I\]là trung điểm cạnh \[SC\]. Khẳng định nào sau đây SAI?              

A. \[\left( {IBD} \right) \cap \left( {SAC} \right) = IO\].              
B. \[IO{\rm{// mp}}\left( {SAB} \right)\].              
C. \[{\rm{mp}}\left( {IBD} \right)\]cắt hình chóp \[S.ABCD\]theo thiết diện là một tứ giá              
D. \[IO{\rm{ // mp}}\left( {SAD} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn C
Chọn C  Ta có: \(\left. (ảnh 1)

Ta có: \(\left. \begin{array}{l}OI{\rm{//}}SA\\OI \not\subset \left( {SAB} \right)\end{array} \right\} \Rightarrow OI{\rm{//}}\left( {SAB} \right)\)nên B đúng.

Ta có: \(\left. \begin{array}{l}OI{\rm{//}}SA\\OI \not\subset \left( {SAD} \right)\end{array} \right\} \Rightarrow OI{\rm{//}}\left( {SAD} \right)\)nên D đúng.

Ta có: \(\left( {IBD} \right)\)cắt hình chóp theo thiết diện là tam giác \(IBD\)nên A sai.

Ta có: \[\left( {IBD} \right) \cap \left( {SAC} \right) = IO\]nên C đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có \(R = 60m = O{A_1}\), Suy ra trong tam giác \({A_1}O{B_1}\) ta có \({A_1}{B_1}^2 = 2O{A_1}^2 - 2O{A^2}_1.cos{120^0}\) \( \Rightarrow {A_1}{B_1}^2 = {2.60^2} + {2.60^2}.\frac{1}{2} = 10800{m^2}\)

Mà các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … có độ dài các cạnh là cấp số nhân với công bội \({q_c} = \frac{1}{2}\)

Nên diện tích các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … là cấp số nhân với công bội \({q_S} = \frac{1}{4}\)

\({S_1} = {S_{{A_1}{B_1}{C_1}}} = \frac{{{A_1}{B_1}^2.\sqrt 3 }}{4} = \frac{{10800\sqrt 3 }}{4} = 2700\sqrt 3 {m^2}\)

\({S_9} = {S_1}.{\left( {\frac{1}{4}} \right)^8} = 0,285{m^2}\)

Lời giải

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành . Gọi \[M\] là trung điểm của \[SB\], \[N\] là trọng tâm \[\Delta SCD\]. Xác định giao điểm của \[MN\] và \[\left( {ABCD} \right)\] (ảnh 1)

Giao điểm của \[MN\] và \[\left( {ABCD} \right)\]

Trong mặt phẳng \[\left( {SCD} \right)\]: Gọi \[E = SN \cap CD\]. Suy ra \[E\] là trung điểm của \[DC\]

Trong mặt phẳng \[\left( {SBE} \right)\]: Gọi \[F = BE \cap MN\]

Vì \[F \in BE\] mà \[BE \subset \left( {ABCD} \right)\] nên suy ra \[F \in \left( {ABCD} \right)\]

Ta có: \[\left. \begin{array}{l}F \in \left( {ABCD} \right)\\F \in MN\end{array} \right\} \Rightarrow F = MN \cap \left( {ABCD} \right)\]

Vậy \[F\] là giao điểm của đường thẳng \[MN\] với mặt phẳng \[\left( {ABCD} \right)\].

Câu 4

A. \(SC\).                                                        
B. đường thẳng qua \(G\) và cắt\(BC\).              
C. đường thẳng qua \(G\) và song song với\(CD\).             
D. đường thẳng qua \(S\)và song song với\(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Song song nhau.                                        
B. Chéo nhau.              
C. Có thể song song hoặc cắt nhau.               
D. Cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP