Các khoảng nghịch biến của hàm số \(y = {x^3} - 12x + 12\) là:              
                                    
                                                                                                                        Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Ta có \(y' = 3{x^2} - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\).
\(y' < 0\) với mọi \(x \in \left( { - 2\,;\,2} \right)\) nên hàm số nghịch biến trên khoảng\(\left( { - 2;2} \right).\)
Vậy hàm số nghịch biến trên khoảng \(\left( { - 2;2} \right).\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
                            
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
 Một công ty bất động sản có \[150\] căn hộ cho thuê, biết rằng nếu cho thuê mỗi căn hộ với giá\[2\]triệu đồng mỗi tháng thì mỗi căn hộ đều có người thuê và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm \[100.000\] đồng mỗi tháng thì có thêm \[5\] căn hộ bị bỏ trống. Mệnh đề nào sau đây đúng
              a) Thu nhập cao nhất của công ty đạt được là 312.500.000 đồng.
              b) Khi giá cho thuê mỗi căn hộ là 2.200.000 đồng thì có 10 căn hộ bị trống
              c) Khi thu nhập công ty cao nhất thì số căn hộ có người thuê là 125 căn hộ.
              d) Khi giá cho thuê mỗi căn hộ là 2.700.000 đồng thì thu nhập của công ty cao nhất.
                        
                    
                PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một công ty bất động sản có \[150\] căn hộ cho thuê, biết rằng nếu cho thuê mỗi căn hộ với giá\[2\]triệu đồng mỗi tháng thì mỗi căn hộ đều có người thuê và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm \[100.000\] đồng mỗi tháng thì có thêm \[5\] căn hộ bị bỏ trống. Mệnh đề nào sau đây đúnga) Thu nhập cao nhất của công ty đạt được là 312.500.000 đồng.
b) Khi giá cho thuê mỗi căn hộ là 2.200.000 đồng thì có 10 căn hộ bị trống
c) Khi thu nhập công ty cao nhất thì số căn hộ có người thuê là 125 căn hộ.
d) Khi giá cho thuê mỗi căn hộ là 2.700.000 đồng thì thu nhập của công ty cao nhất.
Lời giải
| a) | Đ | b) | S | c) | Đ | d) | Đ | 
Đúng; (b) Sai; (c) Đúng; (d) Đúng
Gọi số lần tăng giá tiền cho thuê mỗi căn hộ một tháng để công ty thu được thu nhập cao nhất là\[x\] (\(0 \le x \le 30\))
Số tiền cho thuê mỗi căn hộ là \[2 + 0,1x\]
Số căn hộ mỗi tháng được thuê là \[150 - 5x\]
Thu nhập của công ty đạt được là \[\left( {2 + 0,1x} \right)\left( {150 - 5x} \right)\]
Đặt\[f(x) = \left( {2 + 0,1x} \right)\left( {150 - 5x} \right)\]
\[\begin{array}{l}f'(x) = 0,1.\left( {150 - 5x} \right) - 5\left( {2 + 0,1x} \right) = 15 - 0,5x - 10 - 0,5x = 5 - x\\f'(x) = 0 \Leftrightarrow x = 5\end{array}\]
\(f\left( 0 \right) = 300;f(5) = 312,5;f(30) = 0\)\( \Rightarrow \mathop {Max}\limits_{x \in \left[ {0;30} \right]} f\left( x \right) = f\left( 5 \right) = 312,5\)khi\(x = 5\)
Vậy để có thu nhập cao nhất thì công ty đó phải cho thuê với giá \[2 + 0,1.5 = 2,5\].
Lời giải

Xét trục tọa độ \[Oxy,\] với gốc tọa độ là điểm \[A\]. Tia \[Ox\] trùng với tia\[AB\], tia \[Oy\]trùng với tia \[AD\] thì đường cong ranh giới giữa hai khu vực là đồ thị hàm số bậc ba \[y = a{x^3} + b{x^2} + cx + d\].
Theo giả thiết đồ thị hàm số này đi qua các điểm \[H(0;40);\]\[Q(20;60);\]\[F(100;60)\]và có điểm cực trị là \[Q(20;60)\] nên ta có hệ
\[\left\{ \begin{array}{l}d = 40\\60 = 8000a + 400b + 20c + d\\60 = 1000000a + 10000b + 100c + d\\3.10000a + 2.100b + c = 0\end{array} \right.\]
Giải hệ trên ta được \[a = \frac{1}{{10000}};\;b = \frac{{ - 11}}{{500}};\;c = \frac{7}{5};\;d = 40\].
Do \[M\] là trung điểm của \[AB\] nên tọa độ điểm \[I\] là \[(50;67,5).\] Do đó chiều dài đoạn dây thuộc phần dành cho người lớn là \[67,5{\rm{ }}m\], chiều dài đoạn dây thuộc phần dành cho trẻ em là \[12,5{\rm{ }}m\].
Tổng số tiền mắc dây đèn là \[67,5.0,18 + 12,5.0,14 = 13,9\] (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


 (làm tròn kết quả đến hàng đơn vị của Niu-tơn))
 (làm tròn kết quả đến hàng đơn vị của Niu-tơn))

 Nhắn tin Zalo
 Nhắn tin Zalo