Câu hỏi:

28/10/2025 435 Lưu

Trong không gian với hệ tọa độ Oxyz (đơn vị đo lấy theo \(km\)), một Radar phát hiện một chiếc máy bay di chuyển với tốc độ và hướng không đổi từ điểm \(A\left( {812;\,600\,;\,5} \right)\) đến điểm \(B\left( {950\,;\,530\,;\,6} \right)\) trong 10 phút.

Trong không gian với hệ tọa độ Oxyz (đơn vị đo lấy t (ảnh 1)

Nếu máy bay tiếp tục giữ nguyên tốc độ và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo là \(C\left( {x;\,y\,;\,z} \right)\). Khi đó \(x + y + z\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do chiếc may bay di duyển với tốc độ và hướng không đổi từ \(A\) đến \(B\) trong 10 phút và từ \(B\) đến \(C\) trong 10 phút.

Nên suy ra \(AB = BC\) và \(A,\,B,\,C\) thẳng hàng.

Suy ra \(B\) là trung điểm của \(AC\)

\( \Rightarrow \left\{ \begin{array}{l}{x_B} = \frac{{{x_A} + {x_C}}}{2}\\{y_B} = \frac{{{y_A} + {y_C}}}{2}\\{z_B} = \frac{{{z_A} + {z_C}}}{2}\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}950 = \frac{{812 + x}}{2}\\530 = \frac{{600 + y}}{2}\\6 = \frac{{5 + z}}{2}\end{array} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}x = 1088\\y = 460\\z = 7\end{array} \right.\).

Vậy \(x + y + z = 1555\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có doanh thu của doanh nghiệp khi bán \(x\) máy tính bảng là: \(D\left( x \right) = x.p\left( x \right) = x\left( {4000 - 10x} \right) = 4000x - 10{x^2}\).

Chi phí của doanh nghiệp để sản xuất \(x\) máy tính bảng là: \(C\left( x \right) = x.c\left( x \right) = x\left( {{x^2} - 70x + 400 + \frac{{1000}}{x}} \right) = {x^3} - 70{x^2} + 400x + 1000\).

Lợi nhuận của doanh nghiệp khi bán \(x\) máy tính bảng là: \(L\left( x \right) = D\left( x \right) - C\left( x \right) = 4000x - 10{x^2} - \left( {{x^3} - 70{x^2} + 400x + 1000} \right)\)\( =  - {x^3} + 60{x^2} + 3600x - 1000\).

Xét hàm \(L\left( x \right) =  - {x^3} + 60{x^2} + 3600x - 1000\left( {1 \le x \le 200;x \in \mathbb{N}} \right)\).

Có \(y' =  - 3{x^2} + 120x + 3600\).

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 60\,\,\,\,\,\,\left( N \right)\\x =  - 20\,\,\,\left( L \right)\end{array} \right.\).

Ta có bảng biến thiên

Một doanh nghiệp dự định sả (ảnh 1)

Dựa vào bảng biến thiên ta thấy doanh nghiệp đó sẽ bán \(60\) máy tính bảng để lợi nhuận cao nhất.

Lời giải

Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. (ảnh 2)

Gọi \(y\) là chiều dài của miếng phụ.

Diện tích sử dụng theo tiết diện ngang là \(S = {S_{MNPQ}} + 4xy\).

Cạnh hình vuông \(MN = \frac{{MP}}{{\sqrt 2 }} = \frac{{40}}{{\sqrt 2 }} = 20\sqrt 2 \)cm \( \Rightarrow S = {(20\sqrt 2 )^2} + 4xy = 800 + 4xy\)

Ta có \(2x = AB - MN = AB - 20\sqrt 2  < BD - 20\sqrt 2  = 40 - 20\sqrt 2  \Rightarrow 0 < x < 20 - 10\sqrt 2 \).

Lại có \(A{B^2} + A{D^2} = B{D^2} = {40^2} \Rightarrow {(2x + 20\sqrt 2 )^2} + {y^2} = 1600\).

Thế vào (1), ta được

\(S = 800 + 4x\sqrt {800 - 80x\sqrt 2  - 4{x^2}}  = 800 + 4\sqrt {800{x^2} - 80{x^3}\sqrt 2  - 4{x^4}} \)

Xét hàm số \(f(x) = 800{x^2} - 80{x^3}\sqrt 2  - 4{x^4}\), với \(x \in (0;20 - 10\sqrt 2 )\) có

\({f^\prime }(x) = 1600x - 240{x^2}\sqrt 2  - 16{x^3} = 16x\left( {100 - 15x\sqrt 2  - {x^2}} \right)\).

Ta có bảng biến thiên

Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. (ảnh 3)

Vậy \(x = \frac{{5\sqrt {34}  - 15\sqrt 2 }}{2} \approx 3,97\) chính là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP