Câu hỏi:

28/10/2025 167 Lưu

Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá \(30.000\) đồng một chiếc và mỗi tháng cơ sở bán được trung bình \(3000\) chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá \(30.000\) đồng mà cứ tăng giá thêm \(1000\) đồng thì mỗi tháng sẽ bán ít hơn \(100\) chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là \(18.000\). Hỏi:

              a) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần tăng thêm \[10000\] đồng?

              b) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá \[39000\] đồng?

              c) Để đạt lợi nhuận lớn nhất thì sau khi tăng giá mỗi chiếc khăn lãi \[21000\] đồng?

              d) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm \[800\] chiếc?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

S

b)

Đ

c)

Đ

d)

S

 

Gọi số tiền cần tăng giá mỗi chiếc khăn là \(x\).

Vì cứ tăng giá thêm \(1\) thì số khăn bán ra giảm \(100\) chiếc nên tăng \(x\) thì số xe khăn bán ra giảm \(100x\) chiếc.

Do đó tổng số khăn bán ra mỗi tháng là: \(3000 - 100x\) chiếc.

Lúc đầu bán với giá \(30\), mỗi chiếc khăn có lãi \(12\). Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: \(12 + x\).

Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

\(f\left( x \right) = \left( {3000 - 100x} \right)\left( {12 + x} \right)\).

Xét hàm số \(f\left( x \right) = \left( {3000 - 100x} \right)\left( {12 + x} \right)\) trên \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( x \right) =  - 100{x^2} + 1800x + 36000\).

\(f'\left( x \right) =  - 200x + 1800\)

\(f'\left( x \right) = 0 \Leftrightarrow  - 200x + 1800 = 0 \Leftrightarrow x = 9\)

Lập bảng biến thiên của hàm số \(f\left( x \right)\) trên \(\left( {0;\, + \infty } \right)\) ta thấy hàm số đạy giá trị lớn nhất khi

\[x = 9\]

Như vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là \(9.000\) đồng, tức là mỗi chiếc khăn bán với giá mới là\(39.000\) đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\vec P = m\vec g\) suy ra \(P = mg = 20.10 = 200\left( {{\rm{\;N}}} \right)\).

Vậy trọng lực tác dụng lên em bé là 200 N.

Ta có \(A = P \cdot s \cdot \cos \left( {\vec P,\vec s} \right) = 200 \cdot 2 \cdot \cos {80^ \circ } \approx 69\) (J).

Vậy công sinh bởi trọng lực \(\vec P\) khi em bé trượt hết chiều dài cầu trượt là 306 J.

Lời giải

Ta có: \(f\left( t \right) = \frac{{200}}{{1 + 3{e^{ - t}}}} \Rightarrow f'\left( t \right) = 150.\frac{{ - 3.{e^{ - t}}.\left( { - 1} \right)}}{{{{\left( {1 + 3{e^{ - t}}} \right)}^2}}} = 150.\frac{{3.{e^{ - t}}}}{{{{\left( {1 + 3{e^{ - t}}} \right)}^2}}}\)

\(f''\left( t \right) = 150.\frac{{ - 3{e^{ - t}}{{\left( {1 + 3{e^{ - t}}} \right)}^2} - 2\left( {1 + 3{e^{ - t}}} \right).\left( { - 3{e^{ - t}}} \right).3{e^{ - t}}}}{{{{\left( {1 + 3{e^{ - t}}} \right)}^4}}}\)\( = 150.\frac{{ - 3{e^{ - t}}.\left( {1 + 3{e^{ - t}}} \right)\left( {1 + 3{e^{ - t}} - 6{e^{ - t}}} \right)}}{{{{\left( {1 + 3{e^{ - t}}} \right)}^4}}}\)

\( = 150.\frac{{ - 3{e^{ - t}}.\left( {1 + 3{e^{ - t}}} \right)\left( {1 - 3{e^{ - t}}} \right)}}{{{{\left( {1 + 3{e^{ - t}}} \right)}^4}}}\)\( \Rightarrow f''\left( t \right) = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{3} \Leftrightarrow t =  - \ln \left( {\frac{1}{3}} \right) = \ln 33 \approx 1,09\)

Giả sử tăng cân nặng ( tính bằng \(kg\)) c (ảnh 1)

Vậy sau khi sinh khoảng \(\ln 3 \approx 1,09\) tháng thì vật nuôi có tốc độ tăng cân nhanh nhất.

Câu 3

A.  \(10\).                    
B. \(16\).                    
C.  \(12\).              
D.  \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(m = - 1\,;\,M = 0\).                                
B. \(m = - 5\,;\,M = 0\).              
C. \(m = - 5\,;\,M = - 1\).                             
D. \(m = - 2\,;\,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP