Câu hỏi:

28/10/2025 83 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{ - m{x^2} + \left( {4\;m - 2} \right)x + 1 - 4\;m}}{{x - 1}}\) có đồ thị là \(\left( C \right)\) với \(m\) là tham số

              a) Khi \(m = 1\) đồ thị hàm số có 2 điểm cực trị.

              b) Khi \(m = 1\) đồ thị hàm số không cắt trục \(Ox\).

              c) Khi \[m < - 1\] thì hàm số đạt cực đại và cực tiểu trong miền \(x > 0\).

              d) Có 2 phương trình tiếp tuyến của \(\left( C \right)\) song song với đường thẳng \(x - y = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

Đ

b)

Đ

c)

Đ

d)

Đ

 

(a) Đúng: Khi \(m = 1\) đồ thị hàm số có 2 điểm cực trị

(b) Đúng: Khi \(m = 1:y = \frac{{ - {x^2} + 2x - 3}}{{x - 1}} =  - x + 1 - \frac{2}{{x - 1}}\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\);

\(y' = \frac{{ - {x^2} + 2x + 1}}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow  - {x^2} + 2x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1 - \sqrt 2  \Rightarrow y = 2\sqrt 2 }\\{x = 1 + \sqrt 2  \Rightarrow y =  - 2\sqrt 2 }\end{array}} \right.\)

\(\mathop {\lim }\limits_{x \to 1 \pm } y =  \pm \infty :x = 1\)là tiệm cận đứng; \(\mathop {\lim }\limits_{x \to  \pm x} y =  - x + 1:y =  - x + 1\) là tiệm cận xiên

Bảng biến thiên:

Cho hàm số \(y = \frac{{ - m{x^2} + \left( {4\;m - 2} \r (ảnh 1)

\(x = 0 \Rightarrow y = 3\); \(y = 0 \Rightarrow  - {x^2} + 2x - 3 = 0\) (vô nghiệm) nên đồ thị hàm số không cắt trục \(Ox\)

(c) Đúng: \(y = \frac{{ - m{x^2} + \left( {4m - 2} \right)x + 1 - 4m}}{{x - 1}} \Rightarrow y' = \frac{{ - m{x^2} + 2mx - 4m + 2 - 1 + 4m}}{{{{\left( {x - 1} \right)}^2}}}\)

Suy ra \(y' = \frac{{ - m{x^2} + 2mx + 1}}{{{{\left( {x - 1} \right)}^2}}}\). Dấu \(y'\) là dấu của tam thức \(g\left( x \right) =  - m{x^2} + 2mx + 1\)

\(g\left( x \right){\rm{ c\'o  }}\Delta ' = {m^2} + m\,;\,\,g\left( 1 \right) =  - m + 2m + 1 = m + 1\)

Để hàm số có cực đại và cực tiểu thì \(\left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{m + 1 \ne 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m <  - 1}\\{m > 0}\end{array}} \right.} \right.\)

Lúc này hàm số đạt cực đại và cực tiểu tại \(x = {x_1},x = {x_2}\) và \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2}\\{{x_1} \cdot {x_2} =  - \frac{1}{m}}\end{array}} \right.\).

Giả sử \({x_1} < {x_2}\)

Theo yêu cầu bài toán: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} > 0}\\{{x_2} > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} > 0}\\{{x_1} \cdot {x_2} > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2 > 0{\rm{ (lu\^o n d\'u ng) }}}\\{ - \frac{1}{m} > 0}\end{array} \Leftrightarrow m < 0} \right.} \right.} \right.\)

Giao với điều kiện \(\Delta ' > 0\) được \(m <  - 1\)

(d) Đúng: \({y'_x} = \frac{{ - {x^2} + 2x + 1}}{{{{\left( {x - 1} \right)}^2}}}\). Đường thẳng \(x - y = 0\) có hệ số góc \(k = 1\)

Để tiếp tuyến của \(\left( C \right)\) song song với đường thẳng \(y = x\) cần và đủ là \({y'_x} = 1\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{\frac{{ - {x^2} + 2x + 1}}{{{{\left( {x - 1} \right)}^2}}} = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{ - {x^2} + 2x + 1 = {x^2} - 2x + 1}\end{array}} \right.} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{2{x^2} - 4x = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 3}\\{x = 2 \Rightarrow y =  - 3}\end{array}} \right.} \right.\)

Có hai tiếp tuyến thỏa yêu cầu bài toán:

\(\left( {{T_1}} \right):y = 1\left( {x - 0} \right) + 3 \Leftrightarrow y = x + 3\,;\,\,\left( {{T_2}} \right):y = 1\left( {x - 2} \right) - 3 \Leftrightarrow y = x - 5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hệ toạ độ \(Oxyz\) với \(O\) là gốc toạ độ, các điểm \(A \in Ox,B \in Oy,C \in Oz\) có toạ độ không âm.

Khi đó \(A(30;0;0),B(0;20;0),D(0;20;10);E(30;0;6)\), \(I(15;10;8)\) là trung điểm \(DE\) nên hình chiếu của điểm \(I\) trên sàn là \(T(15;10;0)\) suy ra toạ độ điểm \(V(15;20;0)\), vậy \(V\) cách \(P\) một khoảng bằng 5 m. Tức là bậc thang tại vị trí \(U\) đang là bậc thang thứ 3, có chiều cao 60 cm so với mặt sàn. Vậy toạ độ điểm \(U(15;10;0,6)\).

Từ đó toạ độ đỉnh đầu học sinh đứng là \(K(15;10;2,4)\). Khoảng cách \(IK = 8 - 2,4 = 5,6m\).

Mặt khác toạ độ điểm \(X(15;10;2)\) nên toạ độ mắt học sinh ngồi tại \(X\) là điểm \(Z(15;10;3,2)\) suy ra hiệu khoảng cách từ điểm \(I\) đến sàn và từ điểm \(Z\) đến sàn nhà là \(8 - 3,2 = 4,8m\)

Điều  và  cho thấy tổng độ dài của thanh treo và thân máy chiếu không quá 4,8 mét để thoả mãn đồng thời cả 2 điều kiện.

Lời giải

Gọi chiều dài, chiều rộng lần lượt của khung cửa sổ là \(x,y\) . Điều kiện \(x,y > 0\).

Diện tích của khung cửa sổ là \(xy = 3,4 \Rightarrow y = \frac{{3,4}}{x}\).

Khi đó chu vi của khung cửa sổ là \(C = 2x + 2y = 2x + \frac{{6,8}}{x}\).

Xét hàm số \(f(x) = 2x + \frac{{6,8}}{x}\) trên \((0; + \infty )\).

Ta có \(f\prime (x) = 2 - \frac{{6,8}}{{{x^2}}}\)

Cho \(f\prime (x) = 0 \Rightarrow x = \frac{{\sqrt {85} }}{5} \in (0; + \infty )\)

Ta có bảng biến thiên như sau

Khi làm nhà kho, bác Cường muốn để cửa sổ có dạng hình chữ nhật với diện tích bằng \(3,4{\mkern 1mu} {{\rm{m}}^2}\) . Tìm chu vi nhỏ nhất của khung cửa sổ ? (ảnh 2)

Dựa vào bảng biến thiên ta thấy được chu vi khung cửa sổ nhỏ nhất bằng \(\frac{{4\sqrt {85} }}{5} \approx 7,34\) m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP