Cho một tấm nhôm hình vuông cạnh \(2016\left( {cm} \right)\). Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \[x\left( {cm} \right)\], rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Hỏi:

a) Để hộp nhận được có thể tích lớn nhất thì \[x = 250\left( {cm} \right)\].
b) Để hộp nhận được có thể tích lớn nhất thì \[x = 336\left( {cm} \right)\].
c) Hộp nhận được có thể tích lớn nhất là \[606928896\left( {c{m^3}} \right)\].
d) Hộp nhận được có thể tích lớn nhất là \[606928000\left( {c{m^3}} \right)\].
Cho một tấm nhôm hình vuông cạnh \(2016\left( {cm} \right)\). Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \[x\left( {cm} \right)\], rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Hỏi:

a) Để hộp nhận được có thể tích lớn nhất thì \[x = 250\left( {cm} \right)\].
b) Để hộp nhận được có thể tích lớn nhất thì \[x = 336\left( {cm} \right)\].
c) Hộp nhận được có thể tích lớn nhất là \[606928896\left( {c{m^3}} \right)\].
d) Hộp nhận được có thể tích lớn nhất là \[606928000\left( {c{m^3}} \right)\].
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
|
a) |
S |
b) |
Đ |
c) |
Đ |
d) |
S |
Điều kiện: \[0 < x < 1008,\] ta có.
\[V = h.B = x{\left( {2016 - 2x} \right)^2} = f\left( x \right)\].
Xét hàm số \[f\left( x \right) = x{\left( {2016 - 2x} \right)^2} = x{\left( {a - 2x} \right)^2},a = 2016.\].
Với \[x \in \left( {0;1008} \right),\] ta có: \[f'\left( x \right) = 12{x^2} - 8ax + {a^2};f'\left( x \right) = 0 \Leftrightarrow x = 336\].
Bảng biến thiên
Suy ra V đạt giá trị lớn nhất là \[606928896\left( {c{m^3}} \right)\]khi \[x = 336\left( {cm} \right)\].
Vậy để thể tích hộp lớn nhất, cần cắt bốn góc bốn hình vuông có cạnh \[x = 336.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(x\)(phút) là khoảng thời gian cả hai chuỗi led đồng thời xuất phát đến \(M\) và \(N\) là hai điểm sáng đầu tiên
\( \Rightarrow \left\{ \begin{array}{l}BM = 4x\\AN = 10x\end{array} \right.\)\( \Rightarrow AM = 4 - 4x\)với \(0 \le x \le 4\)
Xét tam giác \(ABC\) vuông tại \(B\) \( \Rightarrow \cos \widehat {MAN} = \frac{{AB}}{{AC}} = \frac{4}{5}\)
Xét tam giác \(AMN\) ta có : \(M{N^2} = A{M^2} + A{N^2} - 2AM.AN.\cos \widehat {MAN}\)
\(M{N^2} = {\left( {4 - 4x} \right)^2} + {\left( {10x} \right)^2} - 2.\left( {4 - 4x} \right).10x.\frac{4}{5}\)\( = 180{x^2} - 96x + 16 = f\left( x \right)\)
Để khoảng cách giữa hai điểm sáng đầu tiên của hai chuỗi led nhỏ nhất \( \Leftrightarrow M{N_{\min }} \Leftrightarrow M{N^2}_{\min }\)
Xét \(f\left( x \right) = 180{x^2} - 96x + 16\) với \(x \in \left[ {0;4} \right]\)
\(f'\left( x \right) = 360x - 96 = 0 \Leftrightarrow \)\(x = \frac{4}{{15}}\)\( \Rightarrow M{N^2}\)đạt giá trị nhỏ nhất \( \Leftrightarrow x = \frac{4}{{15}}\) (phút) \( = 16\) (giây)
Vậy sau 16 giây thì hai điểm sáng đầu tiên của chuỗi led có khoảng cách nhỏ nhất.
Lời giải
Hàm chi phí trung bình
\[\bar C = \bar C(Q) = \frac{C}{Q} = \frac{{\frac{{{Q^2}}}{4} + 3Q + 400}}{Q} = \frac{Q}{4} + 3 + \frac{{400}}{Q}(\]với \[Q > 0){\rm{. }}\]
Ta có \({\bar C^\prime }(Q) = \frac{1}{4} - \frac{{400}}{{{Q^2}}} = \frac{{{Q^2} - 1600}}{{4{Q^2}}} = 0 \Leftrightarrow Q = 40\)
Vì \({\bar C^{\prime \prime }}(Q) = \frac{{800}}{{{Q^2}}} > 0\), nên hàm số \(\bar C\) đạt cực tiểu tại \(Q = 40\).
Chi phí trung bình tối thiểu là \(\bar C(40) = \frac{{40}}{4} + 3 + \frac{{400}}{{40}} = 23\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

