Câu hỏi:

28/10/2025 55 Lưu

Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong \(t\) giờ được tính theo công thức \(g\left( t \right) = \frac{{ - {t^2} + 5t - 3}}{{t + 1}}\). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với \(g\left( t \right) = \frac{{ - {t^2} + 5t - 3}}{{t + 1}}\), \(t > 0\) ta có \(g'\left( t \right) = \frac{{ - {t^2} - 2t + 8}}{{{{\left( {t + 1} \right)}^2}}}\).

Cho \(g'\left( t \right) = 0\)\( \Leftrightarrow \frac{{ - {t^2} - 2t + 8}}{{{{\left( {t + 1} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - 4\end{array} \right.\).

Bảng biến thiên

Một loại thuốc được dùng cho một bệ (ảnh 1)

Suy ra \(\mathop {\max }\limits_{\left( {0; + \infty } \right)} g\left( t \right) = 1\) khi \(t = 2\).

Vậy sau khi tiêm thuốc \(0002\) giờ thì nồng độ thuốc trong máu của bệnh nhân cao nhất.

Đáp số: \(0002\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chào đón năm mới \(2025\), Thành phố trang trí đèn (ảnh 2)

Gọi \(x\)(phút) là khoảng thời gian cả hai chuỗi led đồng thời xuất phát đến \(M\) và \(N\) là hai điểm sáng đầu tiên

\( \Rightarrow \left\{ \begin{array}{l}BM = 4x\\AN = 10x\end{array} \right.\)\( \Rightarrow AM = 4 - 4x\)với \(0 \le x \le 4\)

Xét tam giác \(ABC\) vuông tại \(B\) \( \Rightarrow \cos \widehat {MAN} = \frac{{AB}}{{AC}} = \frac{4}{5}\)

Xét tam giác \(AMN\) ta có : \(M{N^2} = A{M^2} + A{N^2} - 2AM.AN.\cos \widehat {MAN}\)

\(M{N^2} = {\left( {4 - 4x} \right)^2} + {\left( {10x} \right)^2} - 2.\left( {4 - 4x} \right).10x.\frac{4}{5}\)\( = 180{x^2} - 96x + 16 = f\left( x \right)\)

Để khoảng cách giữa hai điểm sáng đầu tiên của hai chuỗi led nhỏ nhất \( \Leftrightarrow M{N_{\min }} \Leftrightarrow M{N^2}_{\min }\)

Xét \(f\left( x \right) = 180{x^2} - 96x + 16\) với \(x \in \left[ {0;4} \right]\)

\(f'\left( x \right) = 360x - 96 = 0 \Leftrightarrow \)\(x = \frac{4}{{15}}\)\( \Rightarrow M{N^2}\)đạt giá trị nhỏ nhất \( \Leftrightarrow x = \frac{4}{{15}}\) (phút) \( = 16\) (giây)

Vậy sau 16 giây thì hai điểm sáng đầu tiên của chuỗi led có khoảng cách nhỏ nhất.

Lời giải

Hàm chi phí trung bình

\[\bar C = \bar C(Q) = \frac{C}{Q} = \frac{{\frac{{{Q^2}}}{4} + 3Q + 400}}{Q} = \frac{Q}{4} + 3 + \frac{{400}}{Q}(\]với \[Q > 0){\rm{. }}\]

Ta có \({\bar C^\prime }(Q) = \frac{1}{4} - \frac{{400}}{{{Q^2}}} = \frac{{{Q^2} - 1600}}{{4{Q^2}}} = 0 \Leftrightarrow Q = 40\)

Vì \({\bar C^{\prime \prime }}(Q) = \frac{{800}}{{{Q^2}}} > 0\), nên hàm số \(\bar C\) đạt cực tiểu tại \(Q = 40\).

Chi phí trung bình tối thiểu là \(\bar C(40) = \frac{{40}}{4} + 3 + \frac{{400}}{{40}} = 23\)

Câu 3

A. \(\overrightarrow a + \frac{1}{4}\left( {\overrightarrow b + \overrightarrow c } \right).\;\)                                
B. \(\overrightarrow a + \frac{1}{6}\left( {\overrightarrow b + \overrightarrow c } \right).\)                                   
C. \(\overrightarrow a + \frac{1}{2}\left( {\overrightarrow b + \overrightarrow c } \right).\)                                   
D. \(\overrightarrow a + \frac{1}{3}\left( {\overrightarrow b + \overrightarrow c } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP