Hàm chi phí của một nhà máy được cho bởi \(C = C(Q) = \frac{{{Q^2}}}{4} + 3Q + 400\) trong đó \(C\) là tổng chi phí sản xuất \(Q\) đơn vị sản phẩm. Với mức sản lượng là bao nhiêu thì chi phí trung bình tính trên mỗi đơn vị sản phẩm là thấp nhất? Khi đó chi phí trung bình tối thiểu bằng bao nhiêu?
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Hàm chi phí trung bình
\[\bar C = \bar C(Q) = \frac{C}{Q} = \frac{{\frac{{{Q^2}}}{4} + 3Q + 400}}{Q} = \frac{Q}{4} + 3 + \frac{{400}}{Q}(\]với \[Q > 0){\rm{. }}\]
Ta có \({\bar C^\prime }(Q) = \frac{1}{4} - \frac{{400}}{{{Q^2}}} = \frac{{{Q^2} - 1600}}{{4{Q^2}}} = 0 \Leftrightarrow Q = 40\)
Vì \({\bar C^{\prime \prime }}(Q) = \frac{{800}}{{{Q^2}}} > 0\), nên hàm số \(\bar C\) đạt cực tiểu tại \(Q = 40\).
Chi phí trung bình tối thiểu là \(\bar C(40) = \frac{{40}}{4} + 3 + \frac{{400}}{{40}} = 23\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(x\)(phút) là khoảng thời gian cả hai chuỗi led đồng thời xuất phát đến \(M\) và \(N\) là hai điểm sáng đầu tiên
\( \Rightarrow \left\{ \begin{array}{l}BM = 4x\\AN = 10x\end{array} \right.\)\( \Rightarrow AM = 4 - 4x\)với \(0 \le x \le 4\)
Xét tam giác \(ABC\) vuông tại \(B\) \( \Rightarrow \cos \widehat {MAN} = \frac{{AB}}{{AC}} = \frac{4}{5}\)
Xét tam giác \(AMN\) ta có : \(M{N^2} = A{M^2} + A{N^2} - 2AM.AN.\cos \widehat {MAN}\)
\(M{N^2} = {\left( {4 - 4x} \right)^2} + {\left( {10x} \right)^2} - 2.\left( {4 - 4x} \right).10x.\frac{4}{5}\)\( = 180{x^2} - 96x + 16 = f\left( x \right)\)
Để khoảng cách giữa hai điểm sáng đầu tiên của hai chuỗi led nhỏ nhất \( \Leftrightarrow M{N_{\min }} \Leftrightarrow M{N^2}_{\min }\)
Xét \(f\left( x \right) = 180{x^2} - 96x + 16\) với \(x \in \left[ {0;4} \right]\)
\(f'\left( x \right) = 360x - 96 = 0 \Leftrightarrow \)\(x = \frac{4}{{15}}\)\( \Rightarrow M{N^2}\)đạt giá trị nhỏ nhất \( \Leftrightarrow x = \frac{4}{{15}}\) (phút) \( = 16\) (giây)
Vậy sau 16 giây thì hai điểm sáng đầu tiên của chuỗi led có khoảng cách nhỏ nhất.
Lời giải
Gọi cạnh đáy của hình chóp tứ giác đều là \(x(dm)\) với \(0 < x < 6\sqrt 2 \) như hình bên.

Ta có:
\(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}.\)
Đường cao của hình chóp tứ giác đều là:
\(h = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \).
Thể tích khối chóp là: \(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}(18 - 3\sqrt 2 x)} \).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số
\(f(x) = {x^4}(18 - 3\sqrt 2 x){\rm{, }}0 < x < 6\sqrt 2 {\rm{. }}\)
Ta có: \({f^\prime }(x) = {x^3}( - 15\sqrt 2 x + 72),{f^\prime }(x) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của \(f(x)\) như sau:

Từ bảng biến thiên ta có \({\max _{(0;6\sqrt 2 )}}f\left( {\frac{{12\sqrt 2 }}{5}} \right) \approx 477,75\) tại \(x = \frac{{12\sqrt 2 }}{5}\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng:
\({V_{\max }} = \frac{1}{3}\sqrt {{{\left( {\frac{{12\sqrt 2 }}{5}} \right)}^4}\left( {18 - 3\sqrt 2 \cdot \frac{{12\sqrt 2 }}{5}} \right)} \approx 7,3\left( {d{m^3}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


