Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = - 3\) yà \(q = 2\). Tống \(n\) số hạng đầu tiên của cấp số nhân đã cho bằng \( - 1533\). Tìm \(n.\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có \( - 1533 = {S_n} = {u_1} \cdot \frac{{1 - {q^n}}}{{1 - q}}\)\( = - 3 \cdot \frac{{1 - {2^n}}}{{1 - 2}}\)\( = - 3\left( {{2^n} - 1} \right)\)
\( \Rightarrow {2^n} = 512 = {2^9} \Leftrightarrow n = 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Mẫu số liệu đã cho có một nhóm có số học sinh là lớn nhất nên mẫu số liệu này có 1 mốt.
Câu 2
Lời giải
Đáp án đúng là: C
Hàm số đã cho xác định \( \Leftrightarrow \sin \left( {x - \frac{\pi }{2}} \right) \ne 0 \Leftrightarrow x - \frac{\pi }{2} \ne k\pi \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ,{\rm{ }}k \in \mathbb{Z}.\)
Vậy tập xác định \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
