CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Giá tiền khoan mỗi mét (bắt đầu từ mét đầu tiên) lập thành cấp số cộng \(\left( {{u_n}} \right)\)\({u_1} = 80\,000,\,\,d = 5\,000.\) Do cần khoan 50 mét nên tổng số tiền cần trả là:

\({u_1} + {u_2} + \cdots + {u_{50}} = {S_{50}} = 50{u_1} + \frac{{50.49}}{2}d = 10\,.125\,.000\).

Câu 2

A. 5 số hạng đầu của dãy số \(\left( {{u_n}} \right)\)\( - 1;\,\frac{{ - 1}}{2};\,\frac{{ - 1}}{3};\,\frac{{ - 1}}{4};\,\frac{{ - 1}}{5}\). 
B. Dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi số \(M = - 1\).         
C. Dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi số \(M = 0\).              
D. Dãy số \(\left( {{u_n}} \right)\) bị chặn dưới bởi số \(m = - 1\).

Lời giải

Đáp án đúng là: B

Ta có \({u_n} = \frac{{ - 1}}{n}\), do đó \({u_1} = \frac{{ - 1}}{1} = - 1,{u_2} = \frac{{ - 1}}{2},{u_3} = \frac{{ - 1}}{3},{u_4} = \frac{{ - 1}}{4},{u_5} = \frac{{ - 1}}{5}\).

\({u_n} = \frac{{ - 1}}{n} < 0\,\,\,\forall n \in {\mathbb{N}^*}\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi số \(M = 0\).

\({u_n} = \frac{{ - 1}}{n} \ge \frac{{ - 1}}{1} = - 1\,\forall n \in {\mathbb{N}^*}\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn dưới bởi số \(m = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(T = 0\).                 
B. \(T = 1\).                     
C. \(T = - 1\).                               
D. \[T = 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(l = \frac{1}{2}R\alpha .\)                            
B. \(l = {R^2}\alpha .\)           
C. \(l = R{\alpha ^2}.\)  
D. \(l = R\alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP