Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước đến để khoan giếng nước. Biết giá của mét khoan đầu tiên là 80 000 đồng, kể từ mét khoan thứ 2 giá của mỗi mét khoan tăng thêm 5 000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 50 m mới có nước. Vậy hỏi phải trả bao nhiêu tiền để khoan cái giếng đó?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Giá tiền khoan mỗi mét (bắt đầu từ mét đầu tiên) lập thành cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 80\,000,\,\,d = 5\,000.\) Do cần khoan 50 mét nên tổng số tiền cần trả là:
\({u_1} + {u_2} + \cdots + {u_{50}} = {S_{50}} = 50{u_1} + \frac{{50.49}}{2}d = 10\,.125\,.000\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \({u_n} = \frac{{ - 1}}{n}\), do đó \({u_1} = \frac{{ - 1}}{1} = - 1,{u_2} = \frac{{ - 1}}{2},{u_3} = \frac{{ - 1}}{3},{u_4} = \frac{{ - 1}}{4},{u_5} = \frac{{ - 1}}{5}\).
Vì \({u_n} = \frac{{ - 1}}{n} < 0\,\,\,\forall n \in {\mathbb{N}^*}\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi số \(M = 0\).
\({u_n} = \frac{{ - 1}}{n} \ge \frac{{ - 1}}{1} = - 1\,\forall n \in {\mathbb{N}^*}\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn dưới bởi số \(m = - 1\).
Lời giải
Lời giải:
a) \[\cos x\cos 5x = \cos 2x\cos 4x\]
\[ \Leftrightarrow \cos 6x + \cos 4x = \cos 6x + \cos 2x\]
\[\begin{array}{l} \Leftrightarrow \cos 4x = \cos 2x\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = 2x + k2\pi }\\{4x = - 2x + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = k\frac{\pi }{3}}\end{array} \Leftrightarrow x = k\frac{\pi }{3}} \right.} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\]
b) \[\cos x + \frac{1}{{\cos x}} + \sin x + \frac{1}{{\sin x}} = \frac{{10}}{3}\]
Điều kiện \[\sin x \ne 0\] và \[\cos x \ne 0\] \[ \Leftrightarrow x \ne \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\].
Phương trình được biến đổi \[\sin x + \cos x + \frac{{\sin x + \cos x}}{{\sin x.\cos x}} = \frac{{10}}{3}\].
Đặt \[t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\], \[\left| t \right| \le \sqrt 2 \]. Thì \[\sin x.\cos x = \frac{{{t^2} - 1}}{2}\].
Và phương trình trở thành: \[3{t^3} - 10{t^2} + 3t + 10 = 0 \Leftrightarrow \left( {t - 2} \right)\left( {3{t^2} - 4t - 5} \right) = 0\]
\( \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = \frac{{2 + \sqrt {19} }}{3}\\t = \frac{{2 - \sqrt {19} }}{3}\end{array} \right.\).
Kết hợp điều kiện, chọn \[t = \frac{{2 - \sqrt {19} }}{3} \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{{2 - \sqrt {19} }}{{3\sqrt 2 }} = \sin \alpha \]
\[ \Leftrightarrow x + \frac{\pi }{4} = \alpha + k2\pi \] hoặc \[x + \frac{\pi }{4} = \pi - \alpha + k2\pi \]\(\left( {k \in \mathbb{Z}} \right)\)
\[ \Leftrightarrow x = \alpha - \frac{\pi }{4} + k2\pi \] hoặc \(\left( {k \in \mathbb{Z}} \right)\)
Vậy nghiệm của phương trình: \[x = \alpha - \frac{\pi }{4} + k2\pi \], \[x = \frac{{3\pi }}{4} - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Người ta ghi lại tuổi thọ của một số con ruồi giấm cho kết quả như sau:
|
Tuổi thọ (ngày) |
\(\left[ {40;\,42} \right)\) |
\(\left[ {42;\,44} \right)\) |
\(\left[ {44;\,46} \right)\) |
\(\left[ {46;\,48} \right)\) |
\(\left[ {48;\,50} \right)\) |
|
Số lượng |
5 |
12 |
23 |
31 |
29 |
Tuổi thọ trung bình của ruồi giấm trong mẫu số liệu trên là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.