Câu hỏi:

03/11/2025 1,515 Lưu

Cho tứ giác \(ABCD\) trong đó không có cặp cạnh đối nào song song. Điểm \(S\) không nằm trên mặt phẳng \(\left( {ABCD} \right)\).

a) Tìm giao tuyến của các cặp mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\), \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Gọi \(N\) là trung điểm của \(SD\). Tìm giao điểm của đường thẳng \(BN\) với mặt phẳng \(\left( {SAC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Cho tứ giác \(ABCD\) trong đó kh (ảnh 1)

a) *Giao tuyến giữa mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\):

Gọi \(O\) là giao điểm hai đường chéo \(AC\)\(BD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAC} \right)\\S \in \left( {SBD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

\(O \in AC\)\(AC\) nằm trên \(\left( {SAC} \right)\) nên \(O \in \left( {SAC} \right)\).

Tương tự \(O \in \left( {SBD} \right)\), do đó \(O\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

Vậy \(SO\) là giao tuyến giữa hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

*Giao tuyến giữa mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\):

Gọi \(I\) là giao điểm giữa \(AB\)\(CD\). Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right)\\S \in \left( {SCD} \right)\end{array} \right\} \Rightarrow S\) là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(I \in AB\)\(AB\) nằm trên \(\left( {SAB} \right)\) nên \(I \in \left( {SAB} \right)\).

Tương tự \(I \in \left( {SCD} \right)\), do đó \(I\) cũng là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

Vậy \(SI\) là giao tuyến giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

b) Xét mặt phẳng \(\left( {SBD} \right)\) có hai đường thẳng \(SO\)\(BN\) cắt nhau tại \(P\). Khi đó ta có:

\(P \in SO\)\(SO\) nằm trên \(\left( {SAC} \right)\), nên \(P \in \left( {SAC} \right)\). Mà \(P \in BN\) nên \(P\) là giao điểm giữa \(BN\) và mặt phẳng \(\left( {SAC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_n} = {5.2^n}\).    
B. \({u_n} = {5.2^{n - 1}}\).      
C. \[{u_n} = {2.5^n}\].         
D. \[{u_n} = {2.5^{n - 1}}\].

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Công bội của cấp số nhân là: \(q = \frac{{{u_2}}}{{{u_1}}} = 2\).

Công thức tổng quát của cấp số nhân đó là: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Phương trình \[2\cos x + 1 = 0 \Leftrightarrow \cos x = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\].

\(x \in \left[ {0;3\pi } \right]\) nên ta có:

\(0 \le \frac{{2\pi }}{3} + k2\pi \le 3\pi \Leftrightarrow - \frac{{2\pi }}{3} \le k2\pi \le \frac{{7\pi }}{3} \Leftrightarrow - \frac{1}{3} \le k \le \frac{7}{6}\)

\( \Rightarrow k \in \left\{ {0;1} \right\}\) (vì \(k \in \mathbb{Z}\)) \( \Rightarrow x \in \left\{ {\frac{{2\pi }}{3};\frac{{8\pi }}{3}} \right\}\).

\(0 \le - \frac{{2\pi }}{3} + k2\pi \le 3\pi \Leftrightarrow \frac{{2\pi }}{3} \le k2\pi \le \frac{{11\pi }}{3} \Leftrightarrow \frac{1}{3} \le k \le \frac{{11}}{6}\)

\( \Rightarrow k = 1\) (vì \(k \in \mathbb{Z}\))\( \Rightarrow x = \frac{{4\pi }}{3}\).

Vậy phương trình có 3 nghiệm trong đoạn \(\left[ {0;3\pi } \right]\).

Câu 4

A. \(x = k\frac{\pi }{4}\left( {k \in \mathbb{Z}} \right)\).                 
B. \(x = k\pi \left( {k \in \mathbb{Z}} \right)\).
C. \(x = k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\).                 
D. \(x = k\frac{\pi }{6}\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Qua 2 điểm phân biệt ta xác định được duy nhất một mặt phẳng.
B. Qua 3 điểm phân biệt bất kì ta xác định được duy nhất một mặt phẳng.
C. Qua 3 điểm phân biệt không thẳng hàng ta xác định được duy nhất một mặt phẳng.
D. Qua 4 điểm phân biệt bất kì ta xác định được duy nhất một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP