Câu hỏi:

03/11/2025 15 Lưu

Cho hai đường thẳng chéo nhau \(a\)\(b\). Lấy \(A\), \(B\) thuộc \(a\)\(C\), \(D\) thuộc \(b\). Khẳng định nào sau đây là đúng khi nói về hai đường thẳng \(AD\)\(BC\)?

A. Có thể song song hoặc cắt nhau.     

B. Cắt nhau.

C. Song song với nhau.    
D. Chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D.

Hướng dẫn giải:  Đáp án đúng là: D. (ảnh 1)

Theo giả thiết, \(a\)\(b\) chéo nhau nên \(a\)\(b\) không đồng phẳng.

Giả sử \(AD\)\(BC\) đồng phẳng. Khi đó ta có 2 trường hợp:

\(AD \cap BC = I \Rightarrow I \in \left( {ABCD} \right) \Rightarrow I \in \left( {a,b} \right)\), mà \(a\)\(b\) không đồng phẳng nên không tồn tại điểm \(I\).

\(AD{\rm{//}}BC \Rightarrow a\)\(b\) đồng phẳng. (mâu thuẫn với giả thiết).

Vậy điều giả sử là sai, do đó \(AD\)\(BC\) chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2; 4; 8; 16;….   
B. 1; – 1 ; 1; – 1;…          
C. 1; 4; 9; 16;….          
D. 1; \(\frac{1}{3}\); \(\frac{1}{9}\); \(\frac{1}{{27}}\);….

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Xét dãy số \({1^2};{2^2};{3^2};...\) có: \(\frac{{{u_2}}}{{{u_1}}} = \frac{4}{1} = 4 \ne \frac{9}{4} = \frac{{{u_3}}}{{{u_2}}}\) nên \({1^2};{2^2};{3^2};...\) không phải là cấp số nhân.

Câu 2

A. \( - \frac{{12}}{{13}}\).         
B. \(\frac{{12}}{{13}}\).  
C. \( - \frac{8}{{13}}\).  
D. \(\frac{8}{{13}}\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

\(\frac{\pi }{2} < \alpha < \pi \) nên \[\left\{ \begin{array}{l}0 < \sin \alpha < 1\\ - 1 < {\rm{cos}}\alpha < 0\end{array} \right.\].

Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\cos ^2}\alpha + {\left( {\frac{5}{{13}}} \right)^2} = 1\)

\( \Leftrightarrow {\cos ^2}\alpha = \frac{{144}}{{169}} \Rightarrow \cos \alpha = - \frac{{12}}{{13}}\) (vì \[ - 1 < {\rm{cos}}\alpha < 0\]).

Vậy \[{\rm{cos}}\alpha = - \frac{{12}}{{13}}\].

Câu 3

A. Ba điểm phân biệt.      
B. Một điểm và một đường thẳng.          
C. Hai đường thẳng cắt nhau.    
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({u_m} = {u_k}.{q^k}\).               
B. \({u_m} = {u_k}.{q^m}\).      
C. \({u_m} = {u_k}.{q^{m - k}}\).                
D. \({u_m} = {u_k}.{q^{m + k}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2};\frac{1}{4};\frac{1}{8}\).    
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}\).   
C. \(\frac{1}{2};\frac{1}{4};\frac{1}{{16}}\).    
D. \(\frac{1}{2};\frac{2}{3};\frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP