Câu hỏi:

03/11/2025 15 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?

A. \(d\) qua \(S\) và song song với \(BC\).    
B. \(d\) qua \(S\) và song song với \(DC\). 
C. \(d\) qua \(S\) và song song với \(AB\).     
D. \(d\) qua \(S\) và song song với \(BD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Hướng dẫn giải:  Đáp án đúng là: A. (ảnh 1)

Ta có: Vì \(AD{\rm{//}}BC\), mà \(AD\) nằm trên \(\left( {SAD} \right)\), \(BC\) nằm trên \(\left( {SBC} \right)\) nên giao tuyến \(d\) của 2 mặt phẳng sẽ song song với \(AD\)\(BC\).

Mặt khác, \(S\) là điểm chung giữa 2 mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\) nên \(S \in d\).

Vậy \(d\) qua \(S\) và song song với \(BC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2; 4; 8; 16;….   
B. 1; – 1 ; 1; – 1;…          
C. 1; 4; 9; 16;….          
D. 1; \(\frac{1}{3}\); \(\frac{1}{9}\); \(\frac{1}{{27}}\);….

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Xét dãy số \({1^2};{2^2};{3^2};...\) có: \(\frac{{{u_2}}}{{{u_1}}} = \frac{4}{1} = 4 \ne \frac{9}{4} = \frac{{{u_3}}}{{{u_2}}}\) nên \({1^2};{2^2};{3^2};...\) không phải là cấp số nhân.

Câu 2

A. \( - \frac{{12}}{{13}}\).         
B. \(\frac{{12}}{{13}}\).  
C. \( - \frac{8}{{13}}\).  
D. \(\frac{8}{{13}}\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

\(\frac{\pi }{2} < \alpha < \pi \) nên \[\left\{ \begin{array}{l}0 < \sin \alpha < 1\\ - 1 < {\rm{cos}}\alpha < 0\end{array} \right.\].

Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\cos ^2}\alpha + {\left( {\frac{5}{{13}}} \right)^2} = 1\)

\( \Leftrightarrow {\cos ^2}\alpha = \frac{{144}}{{169}} \Rightarrow \cos \alpha = - \frac{{12}}{{13}}\) (vì \[ - 1 < {\rm{cos}}\alpha < 0\]).

Vậy \[{\rm{cos}}\alpha = - \frac{{12}}{{13}}\].

Câu 3

A. Ba điểm phân biệt.      
B. Một điểm và một đường thẳng.          
C. Hai đường thẳng cắt nhau.    
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({u_m} = {u_k}.{q^k}\).               
B. \({u_m} = {u_k}.{q^m}\).      
C. \({u_m} = {u_k}.{q^{m - k}}\).                
D. \({u_m} = {u_k}.{q^{m + k}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2};\frac{1}{4};\frac{1}{8}\).    
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}\).   
C. \(\frac{1}{2};\frac{1}{4};\frac{1}{{16}}\).    
D. \(\frac{1}{2};\frac{2}{3};\frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP