Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.

Ta có: Vì \(AD{\rm{//}}BC\), mà \(AD\) nằm trên \(\left( {SAD} \right)\), \(BC\) nằm trên \(\left( {SBC} \right)\) nên giao tuyến \(d\) của 2 mặt phẳng sẽ song song với \(AD\) và \(BC\).
Mặt khác, \(S\) là điểm chung giữa 2 mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) nên \(S \in d\).
Vậy \(d\) qua \(S\) và song song với \(BC\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Xét dãy số \({1^2};{2^2};{3^2};...\) có: \(\frac{{{u_2}}}{{{u_1}}} = \frac{4}{1} = 4 \ne \frac{9}{4} = \frac{{{u_3}}}{{{u_2}}}\) nên \({1^2};{2^2};{3^2};...\) không phải là cấp số nhân.
Câu 2
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Vì \(\frac{\pi }{2} < \alpha < \pi \) nên \[\left\{ \begin{array}{l}0 < \sin \alpha < 1\\ - 1 < {\rm{cos}}\alpha < 0\end{array} \right.\].
Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\cos ^2}\alpha + {\left( {\frac{5}{{13}}} \right)^2} = 1\)
\( \Leftrightarrow {\cos ^2}\alpha = \frac{{144}}{{169}} \Rightarrow \cos \alpha = - \frac{{12}}{{13}}\) (vì \[ - 1 < {\rm{cos}}\alpha < 0\]).
Vậy \[{\rm{cos}}\alpha = - \frac{{12}}{{13}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.